• Title/Summary/Keyword: Collision estimation

Search Result 164, Processing Time 0.022 seconds

Development of Collision Detection Method Using Estimation of Cartesian Space Acceleration Disturbance (직교좌표계 가속도 외란 추정을 통한 충돌 감지 알고리즘 개발)

  • Jung, Byung-jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.258-262
    • /
    • 2017
  • In this paper, we propose a new collision detection algorithm for human-robot collaboration. We use an IMU sensor located at the tip of the manipulator and the kinematic behavior of the manipulator to detect the unexpected collision between the robotic manipulator and environment. Unlike other method, the developed algorithm uses only the kinematic relationship between the manipulator joint and the end effector. Therefore, the collision estimation signal is not affected by the error of the dynamics model. The proposed collision detection algorithm detects the collision by comparing the estimated acceleration of the end effector derived from the position, velocity and acceleration trajectories of the robot joints with the actual acceleration measured by the sensor. In simulation, we compare the performance of our method with the conventional Residual Observer (ROB). Our method is less sensitive to the load variation because of the independency on the dynamic modeling of the manipulator.

Vision-Based Obstacle Collision Risk Estimation of an Unmanned Surface Vehicle (무인선의 비전기반 장애물 충돌 위험도 평가)

  • Woo, Joohyun;Kim, Nakwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1089-1099
    • /
    • 2015
  • This paper proposes vision-based collision risk estimation method for an unmanned surface vehicle. A robust image-processing algorithm is suggested to detect target obstacles from the vision sensor. Vision-based Target Motion Analysis (TMA) was performed to transform visual information to target motion information. In vision-based TMA, a camera model and optical flow are adopted. Collision risk was calculated by using a fuzzy estimator that uses target motion information and vision information as input variables. To validate the suggested collision risk estimation method, an unmanned surface vehicle experiment was performed.

Collision Risk Probability Considerations for Small Divided Areas

  • Guk, Seung-Gi;Fukuda, Gen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.387-389
    • /
    • 2013
  • In order to determine the collision risk, the probability estimation is very important part for accurate risk estimation. Recently, the collision risk at the Busan North Port is studied for making the risk map by authors. The result has been found some connections with previous collision places. For more precise estimation, the probability calculation is necessary. Recently the Bayesian matrix is mainly used for calculating the probabilities. Also considering the oil spill risk with tankers, ships' speed, relative angle and ships' size are key aspect whether breaking the double hull or not. This research presents the way of estimating the probabilities not her research and also the collision risk probability considerations for small divided areas.

  • PDF

Bayesian Collision Risk Estimation Algorithm for Efficient Collision Avoidance against Multiple Traffic Vessels (다중 선박에서 효율적인 충돌 회피를 위한 베이지안 충돌 위험도 추정 알고리즘)

  • Song, Byoung-Ho;Lee, Keong-Hyo;Jeong, Min-A;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3B
    • /
    • pp.248-253
    • /
    • 2011
  • Collision avoidance algorithm of vessels have been studied to avoid collision and grounding of a vessel due to human error. In this paper, We propose a collision avoidance algorithm using bayesian estimation theory for safety sailing and reduced risk of collision accident. We calculate collision risk for efficient collision avoidance using bayesian algorithm and determined the safest and most effective collision risk is predicted by using re-planned with re-evaluated collision risk in the future(t=t'). Others ship position is assumed to be informed from AIS. Experimental results show that we estimate the safest and most effective collision risk.

Object-aware Depth Estimation for Developing Collision Avoidance System (객체 영역에 특화된 뎁스 추정 기반의 충돌방지 기술개발)

  • Gyutae Hwang;Jimin Song;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.91-99
    • /
    • 2024
  • Collision avoidance system is important to improve the robustness and functional safety of autonomous vehicles. This paper proposes an object-level distance estimation method to develop a collision avoidance system, and it is applied to golfcarts utilized in country club environments. To improve the detection accuracy, we continually trained an object detection model based on pseudo labels generated by a pre-trained detector. Moreover, we propose object-aware depth estimation (OADE) method which trains a depth model focusing on object regions. In the OADE algorithm, we generated dense depth information for object regions by utilizing detection results and sparse LiDAR points, and it is referred to as object-aware LiDAR projection (OALP). By using the OALP maps, a depth estimation model was trained by backpropagating more gradients of the loss on object regions. Experiments were conducted on our custom dataset, which was collected for the travel distance of 22 km on 54 holes in three country clubs under various weather conditions. The precision and recall rate were respectively improved from 70.5% and 49.1% to 95.3% and 92.1% after the continual learning with pseudo labels. Moreover, the OADE algorithm reduces the absolute relative error from 4.76% to 4.27% for estimating distances to obstacles.

Validation on the algorithm of estimation of collision risk among ships based on AIS data of actual ships' collision accident (선박충돌사고 AIS 데이터 기반 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.180-181
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

  • PDF

Validation on the Algorithm of Estimation of Collision Risk among Ships based on AIS Data of Actual Ships' Collision Accident (선박충돌사고의 AIS 데이터를 이용한 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.727-733
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

Estimation of Ship Collision Energy with Bridge (교량의 선박충돌 에너지 산정)

  • Lee Seong-Lo;Kang Sung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.416-419
    • /
    • 2004
  • The kinetic energy during ship collision with bridge piers is released as the permanent deformations of structure and friction between the impact surfaces. So the ship collision energy is estimated from the equations of motions for ship-pier collisions which include the influence of the surrounding water, different impact angles and impact locations. The normal impact energy and tangent impact energy at a collision location and angle can be transformed into the normal impact force and friction force acting on the structure. Also the kinetic energy after collisions is calculated from the linear and angular impulse of ship collisions. The collision energy absorption system such as the protective structures for bridges is designed by evaluating the damage portions of ship and structure during the ship-structure collisions varying from the soft impact to hard impact and then the estimation of it will be suited for the design of protective measures.

  • PDF

AEBS Algorithm with Tire-Road Friction Coefficient Estimation (타이어-노면 마찰계수 추정을 이용한 AEBS 알고리즘)

  • Han, Seungjae;Lee, Taeyoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 2013
  • This paper describes an algorithm for Advanced Emergency Braking(AEB) with tire-road friction coefficient estimation. The AEB is a system to avoid a collision or mitigate a collision impact by decelerating the car automatically when forward collision is imminent. Typical AEB system is operated by Time-to-collision(TTC), which considers only relative velocity and clearance from control vehicle to preceding vehicle. AEB operation by TTC has a limit that tire-road friction coefficient is not considered. In this paper, Tire-road friction coefficient is also considered to achieve more safe operation of AEB. Interacting Multiple Model method(IMM) is used for Tire-road friction coefficient estimation. The AEB algorithm consists of friction coefficient estimator and upper level controller and lower level controller. The numerical simulation has been conducted to demonstrate the control performance of the proposed AEB algorithm. The simulation study has been conducted with a closed-loop driver-controller-vehicle system using using MATLAB-Simulink software and CarSim Vehicle model.

Estimation for the Number of Tags in the Slotted-ALOHA based RFID Systems

  • Quan, Chang-Hao;Mo, Hee-Sook;Choi, Gil-Young
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.203-206
    • /
    • 2005
  • Recently, the RFID(Radio Frequency Identification) technology has gained significant attention. One of the performance issues in RFID systems is to resolve the tag collision among responses from RFID tags. In this paper, we proposed a new scheme for estimation of the number of tags in the reader filed. The scheme is used by anti-collision algorithm to identify multiple tags efficiently. And we also present the simulation result that shows the proposed scheme to estimate tags efficiently and also to improve the systems efficiency.

  • PDF