• Title/Summary/Keyword: Collision Risks

Search Result 55, Processing Time 0.03 seconds

Collision Risk Analysis in Busan Harbour

  • Gug, Seung-Gi;Fukuda, Gen;Cho, A-Ra;Park, Hye-Ri
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.53-57
    • /
    • 2014
  • This thesis, concentrates on marine collision risks of the area divided by cells. Using a gas molecular collision calculation model, a collision risk model is proposed. Collision risk is estimated by relative angle, relative speed, and ship's density in the cell. For one week, Automatic Identification System (AIS) data was collected and analyzed on the Busan North Port area. The results indicate a high-risk area at the sea route connection point in Busan North Port. It also shows that twilight is the time of day when most collisions occur. This means that the area is high risk due to the number of collisions and other dangerous factors related to twilight. Although there is still need to consider other risks such as grounding risks, the results of this study are useful to for plotting a risk map for the port.

Development and Operation Status of Space Object Collision Risk Management System for Korea Aerospace Research Institute (KARI) (한국항공우주연구원 우주물체 충돌위험 관리시스템 개발 및 운영현황 )

  • Jaedong Seong;Okchul Jung;Youeyun Jung;Saehan Song
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.280-300
    • /
    • 2023
  • This paper includes the development and operational status of the space object collision risk management system operated by the Korea Aerospace Research Institute. Currently, it monitors 6 low-orbit satellites and 3 geostationary satellites for collision risks 24 hours, enabling prompt collision avoidance maneuvers to ensure safe and stable operations. Since Chinese anti-satellite test (ASAT) in 2007, the monitoring of collision risks between space objects and operational satellites has been taken seriously, leading to the development of various collision risk management systems to respond quickly and efficiently to such situations. This paper provides an introduction to the space object collision risk management system developed from 2007 to the present, the current status of artificial space objects around Earth, and the system currently in operation. Additionally, it outlines future prospects and plans for the system.

Point Cloud-Based Spatial Environment Development for Near Real-Time Erection Simulation in Shipyards

  • Yeon-Jun Kim;SeungYeol Wang;Jaewon Jang;Bon-Yeong Park;Dong-Kun Lee;Daekyun Oh
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.247-255
    • /
    • 2023
  • Interference and collisions often occur in the loading process at shipyards. Existing simulation methods focus primarily on resource processes and schedules, and there is a lack of real-time reflection in the complex and highly variable loading process. This study aims to develop a spatial environment incorporating real-time product data, such as hulls, and confirms its effectiveness by simulating various construction scenarios. As a method, a near real-time spatial environment based on broadband laser scanning was established, with the situation of loading heavy cargo assumed when converting an existing ship into an LNG dual-fuel propulsion ship. A case study simulation of near-real-time cargo loading processes was then conducted using Unity 3D to confirm the interference and collision risks within the spatial environment. The results indicated that interference occurred in structures previously not identified in the design data, and a collision occurred during the loading object erection phase. The simulation confirmed that the identification of interference and collision risks during the erection phase highlights the need for a relocation or removal process of potential hazards before erection takes place. An improved erection simulation that integrates near real-time data could effectively prevent interference and collision risks.

A Study on Collision Avoidance Algorithm Based on Obstacle Zone by Target (Obstacle Zone by Target 기반 선박 충돌회피 알고리즘 개발에 관한 연구)

  • Chan-Wook Lee;Sung-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • In the 21st century, the rapid development of automation and artificial intelligence technologies is driving innovative changes in various industrial sectors. In the transportation industry, this is evident with the commercialization of autonomous vehicles. Moreover research into autonomous navigation technologies is actively underway in the aviation and maritime sectors. Consequently, for the practical implementation of autonomous ships, an effective collision avoidance algorithm has become a crucial element. Therefore, this study proposes a collision avoidance algorithm based on the Obstacle Zone by Target(OZT), which visually represents areas with a high likelihood of collisions with other ships or obstacles. The A-star algorithm was utilized to represent obstacles on a grid and assess collision risks. Subsequently, a collision avoidance algorithm was developed that performs fuzzy control based on calculated waypoints, allowing the vessel to return to its original course after avoiding the collision. Finally, the validity of the proposed algorithm was verified through collision avoidance simulations in various encounter scenarios.

Adaptive Range-Based Collision Avoidance MAC Protocol in Wireless Full-duplex Ad Hoc Networks

  • Song, Yu;Qi, Wangdong;Cheng, Wenchi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3000-3022
    • /
    • 2019
  • Full-duplex (FD) technologies enable wireless nodes to simultaneously transmit and receive signal using the same frequency-band. The FD modes could improve their physical layer throughputs. However, in the wireless ad hoc networks, the FD communications also produce new interference risks. On the one hand, the interference ranges (IRs) of the nodes are enlarged when they work in the FD mode. On the other hand, for each FD pair, the FD communication may cause the potential hidden terminal problems to appear around the both sides. In this paper, to avoid the interference risks, we first model the IR of each node when it works in the FD mode, and then analyze the conditions to be satisfied among the transmission ranges (TRs), carrier-sensing ranges (CSRs), and IRs of the FD pair. Furthermore, in the media access control (MAC) layer, we propose a specific method and protocol for collision avoidance. Based on the modified Omnet++ simulator, we conduct the simulations to validate and evaluate the proposed FD MAC protocol, showing that it can reduce the collisions effectively. When the hidden terminal problem is serious, compared with the existing typical FD MAC protocol, our protocol can increase the system throughput by 80%~90%.

A Study on the Risk Evaluation in Two Dimensions at Sea with Even Risk Contour (등위험곡선을 이용한 해상의 2차원 위험도 평가에 관한 연구)

  • 공성호;이은방
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10b
    • /
    • pp.1-9
    • /
    • 1998
  • In the decision of a collision avoidance action for navigators and intellignet ships, it is necessary to evaluate the degree of surrounding risks effectively. We propose the new risk evaluation technique in two dimensions using Even Risk Contour on the basis of the concept of contour line. In this paper, we introduce the algorithms ofERC and Approach Velocity(AV) and show their application for avoiding traffic collision at sea.

  • PDF

Analysing the probability of risks by using AIS Data

  • Guk, Seung-Gi;Fukuda, Gen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.169-171
    • /
    • 2013
  • The ships always have had the risk of collision. There are also a number of near-miss situations especially in the congested area such as port entrance, restricted waters and crossing point of the ship's route. In those areas, the navigator might have more stress than other areas. If the collision risk of decided area is calculated, it might be possible to analyse the human factors by using this data. It is also helpful for deciding a position of aids to navigation or any other system for the safety navigation. For this purpose, the model of collision risk with AIS data has been explained in this paper. The calculated result from the proposed model has been examined by using the simulation.

  • PDF

A Study of the Depth Control System and the Collision Avoidance System for the Manta-type UUV (만타형 UUV의 심도제어와 충돌회피에 관한 연구)

  • Kim, Ju-Han;Lee, Seung-Keon;Lee, Sang-Eui;Bae, Cheol-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.447-452
    • /
    • 2008
  • In this paper, the automatic depth control system and the collision avoidance system of the Manta UUV have been established in vertical and horizontal plane. The PID control theory and the Fuzzy theory are adopted in this system. The 6-DOF MMG model had been established by theoretical calculations and captive model test results. The depth control simulation results have been fully presented. The collision risks of the UUV had calculated by the fuzzy theory with the virtual sonar system. Finally, the automatic depth control system and the collision avoidance simulation system of Manta UUV have been fully developed and simulated.

Methodology for Calculating Surrogate Safety Measure by Using Vehicular Trajectory and Its Application (차량궤적자료를 이용한 SSM 산출 방법론 개발과 적용사례 분석)

  • PARK, Seongyong;LEE, Chungwon;KHO, Seung-Young;LEE, Yong-Gwan
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.323-336
    • /
    • 2015
  • Estimating the risks on the roadway using surrogate safety measures (SSM) has an advantage in that it focuses on the vehicle trajectory directly involved in conflicts. On the other hand, there is a restriction on estimating the risks of continuous segments due to the limited data collected from a location. To overcome the restriction, this study presents the scheme of acquiring the vehicular trajectory using real time kinematics-differential global positioning system (RTK-DGPS) and develops a methodology which contains the considerations of the problems to calculate the SSM such as time-to-collision (TTC), deceleration rate to avoid collision (DRAC) and acceleration noise (AN). By using the methodology, this study shows a result from an experiment executed in a section where the variation of vehicular movement can be observed from several continuous flow roadway sections near Seoul and Gyeonggi Province in Korea. The result illustrated the risks on the roadway by the SSM metrics in certain situations like merging and diverging, stop-and-go, and weaving. This study would be applied to relate the dangers with characteristics of drivers and roadway sections, and prevenst accidents or conflicts by detecting dangerous roadway sections and drivers' behaviors. This study contributes to improving roadway safety and reducing car-accidents.

Development of a Collision Risk Assessment System for Optimum Safe Route (최적안전항로를 위한 충돌위험도 평가시스템의 개발)

  • Jeon, Ho-Kun;Jung, Yun-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.670-678
    • /
    • 2018
  • In coastal waters where the traffic volume of the ship is high, there is a high possibility of a collision accident because complicated encounter situations frequently occurs between ships. To reduce the collision accidents at sea, a quantitative collision risk assessment is required in addition to the navigator's compliance with COLREG. In this study, a new collision risk assessment system was developed to evaluate the collision risk on ship's planned sailing routes. The appropriate collision risk assessment method was proposed on the basis of reviewing existing collision risk assessment models. The system was developed using MATLAB and it consists of three parts: Map, Bumper and Assessment. The developed system was applied to the test sea area with simple computational conditions for testing and to actual sea areas with real computational conditions for validation. The results show the length of own ship, ship's sailing time and sailing routes affect collision risks. The developed system is expected to be helpful for navigators to choose the optimum safe route before sailing.