• Title/Summary/Keyword: Collision Avoidance System

Search Result 390, Processing Time 0.026 seconds

A Development of 3-D Resolution Algorithm for Aircraft Collision Avoidance

  • Kim, Youngrae;Lee, Sangchul;Lee, Keumjin;Kang, Ja-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.272-281
    • /
    • 2013
  • Traffic Collision Avoidance System (TCAS) is designed to enhance safety in aircraft operations, by reducing the incidences of mid-air collision between aircraft. The current version of TCAS provides only vertical resolution advisory to the pilots, if an aircraft's collision with another is predicted to be imminent, while efforts to include horizontal resolution advisory have been made, as well. This paper introduces a collision resolution algorithm, which includes both vertical and horizontal avoidance maneuvers of aircraft. Also, the paper compares between the performance of the proposed algorithm and that of algorithms with only vertical or horizontal avoidance maneuver of aircraft.

Development of a Dynamic Collision Avoidance Algorithm for Indoor Tracking System Based on Active RFID

  • Han, Se-Kyung;Choi, Yeon-Suk;Iwai, Masayuki;Sezaki, Kaoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.736-752
    • /
    • 2010
  • We propose a novel collision-avoidance algorithm for the active type RFID regarding an indoor tracking system. Several well-known collision avoidance algorithms are analyzed considering the adequacy for the indoor tracking system. We prove the superiority of the slotted ALOHA in comparison with CSMA for short and fixed length packets like an ID message in RFID. Observed results show that they are not applicable for active type RFID in terms of energy efficiency. Putting these all together, we propose a dedicated collision avoidance algorithm considering the unique features of the indoor tracking system. The proposed method includes a scheduled tag access period (STAP) as well as a random tag access period (RTAP) to address both of the static and dynamic characteristics of the system. The system parameters are determined through a quantitative analysis of the throughput and energy efficiency. Especially, some mathematical techniques have been deployed to obtain the optimal slot count for RTAP. Finally, simulation results are provided to illustrate the performance of the proposed method with variations of the parameters.

Automatic Ship Collision Avoidance in Narrow Channels through Curvilinear Coordinate Transformation (곡선좌표계 변환에 기반한 협수로에서 선박 자율 충돌회피)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.191-197
    • /
    • 2021
  • This study addresses autonomous ship collision avoidance in narrow channels using curvilinear coordinates. Navigation in narrow channels or fairways is known to be much more difficult and challenging compared with navigation in the open sea. It is not straightforward to apply the existing collision avoidance framework designed for use in the open sea to collision avoidance in narrow channels due to the complexity of the problem. In this study, to generalize the autonomous navigation procedure for collision avoidance in narrow channels, we introduce a curvilinear coordinate system for collision-free path planning using a parametric curve, B-spline. To demonstrate the feasibility of the proposed algorithm, ship traffic simulations were performed and the results are presented.

Ship Collision Avoidance Support Model in Close Quarters Situation(I) (근접상황 선박충돌회피지원모델에 관한 연구(I))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.89-94
    • /
    • 2004
  • Up to now a lot of the study on ship collision avoidance systems has proceeded actively. However the frequency of ship collision accidents didn't decreased. If there is collision risk in close quarters situation none the less manouvering ship for collision avoidance according to the system, only use of TCPA and DCPA as input factor for collision risk decision is not useful to avoiding collision action. For the recent 5 years by the analysis of first observation distance about approaching ship in domestic collision accidents, nearly $45\%$ of accidents is close first observation less than 2 miles. Therefor it is essential part for safety navigations to study for collision avoidance action in close encounter. In this paper, as foundation study of supporting collision avoidance manoeuvring for navigators, we proposed ship collision avoidance support model in close quarters situation through analysis of collision accidents for effective getting rid of the causes.

  • PDF

Ship Collision Avoidance Support Model in Close Quarters Situation( I ) (근접상황 선박충돌회피지원모델에 관한 연구( I ))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.827-832
    • /
    • 2004
  • Up to now a lot of the study on ship collision avoidance systems have proceeded actively. However the rate of ship collision accidents hasn't decreased yet. If there is collision risk in close quarters situation in spite of maneuvering ship for collision avoidance according to the system, only use of TCP A and DCP A as input factor for collision risk decision is not useful to avoiding collision action. For the recent 5 years by the analysis of first observation distance about approaching ship in domestic collision accidents, nearly $45\%$ of accidents is close first observation less than 2 miles. Therefore it is essential part for safety navigations to study for collision avoidance action in close encounter. In this paper, as a fundamental study of supporting collision avoidance maneuvering for navigators, we proposed ship collision avoidance support model in close quarters situation through analysis qf collision accidents to effectively get rid of the causes.

Ship Collision Avoidance Support Model in Close Quarters Situation (II) (근접상황 선박충돌회피지원모델에 관한 연구(II))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.827-832
    • /
    • 2005
  • In this paper, as a fundamental study of ship collision avoidance supporting system in close quarters situation, we propose ship collision avoidance support model for decreasing ship collision accidents those have occurred due to navigator's unsuitable maneuvering in close encounter. This model will effectively support maneuvering for collision avoidance through displaying the feasible area and the method of collision avoidance using own ship's turning characteristic about action of target ship's keeping course and velocity.

Ship Collision Avoidance Support Model in Close Quarters Situation(II) (근접상황 선박충돌회피지원모델에 관한 연구(II))

  • Yang, Hyoung-Seon;Yea, Byeong-Deok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.119-124
    • /
    • 2005
  • In this paper, as a fundamental study of ship collision avoidance supporting system in close quarters situation, we propose ship collision avoidance support model for decreasing ship collision accidents those have occurred due to navigator's unsuitable maneuvering in close encounter. This model will effectively support maneuvering for collision avoidance through displaying the feasible area and the method of collision avoidance using own ship's turning characteristic about target ship's keeping course and velocity maneuvering actions.

  • PDF

Development of Lane Change System considering Acceleration for Collision Avoidance (충돌회피를 위한 가속도를 고려한 차선 변경 시스템 개발)

  • Kang, Hyunkoo;Lee, Donghwi;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • This paper presents the lane change system for collision avoidance. The proposed algorithm for the collision avoidance consists of path generation and path following. Using a calculated TTC (Time to Collision), partial braking is operated and collision avoidance path is generated considering relative distance, velocity and acceleration. Based on the collision avoidance path, desired yaw angle and yaw rate are calculated for the automated path following. The lateral controller is designed by a Lyapunov function approach using 3 D.O.F vehicle model and vehicle parameters. The required steering angle is determined from wheel velocity, longitudinal and lateral velocity in order to follow the desired yaw angle and yaw rate. This system is developed MATLAB/Simulink and its performance is evaluated using the commercial software CarSim.

A Study on the Seaborne Collision Avoidance System Using the Airborne CAS

  • KANG, Jeong-gu;PARK, Jin-Soo;PARK, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.65-72
    • /
    • 2020
  • Mankind has been using ships for more than 5,000 years and has developed a range of related technologies. However, despite such a long history, compared to aircraft with a history of approximately one century, the pace of progress has been markedly slow. Even though technological progress of ships or the installation of various navigation equipment have been achieved, seaborne collisions have occurred quite frequently. This study analyzed the TCAS( Traffic Collision Avoidance System) that has contributed to the prevention of collisions with other transport methods including aircraft to suggest a collision avoidance system that can be deployed for ships. To apply the technologies applied to aircraft that move in 3D to ships that move in 2D, the difference in the operational environment between the two modes was analyzed to identify elements that need to be applied to ships. The suggested display of data on the collision prevention system is one that manipulates the augmented reality display device used in automobiles that over the past few years has undergone rapid development. Based on the presentation of technological elements that need to be considered when adopting the SCAS or the Seaborne Collision Avoidance System as suggested in this study, the authors hope to contribute to the prevention of collisions.

Design of the Neuro-Fuzzy based System for Analyzing Collision Avoidance Measures of Ships (뉴로-퍼지 기반의 선박 충돌 회피 조치 분석 시스템 설계)

  • Yi, Mira
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.113-118
    • /
    • 2017
  • Various studies on the method of ship collision risk assessment for alarm have been reported constantly, and the result of the studies is applied to navigation devices. However, it is known that navigators ignore or turn off frequent alarms from the devices of predicting collision risk, because they may avoid collisions in the most of situations. In oder to make the prediction of ship collision risk more useful, it is necessary to consider the customary actions of ship collision avoidance. This paper proposes a system of analyzing collision avoidance measures of ships according to the types of encounter and managing the avoidance history of each ship. The core module of the system is designed as a neuro-fuzzy based inference system, and the test of the module validates the proposed system.