• Title/Summary/Keyword: Collimator

Search Result 494, Processing Time 0.025 seconds

Verification of Mechanical Leaf Gap Error and VMAT Dose Distribution on Varian VitalBeamTM Linear Accelerator

  • Kim, Myeong Soo;Choi, Chang Heon;An, Hyun Joon;Son, Jae Man;Park, So-Yeon
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2018
  • The proper position of a multi-leaf collimator (MLC) is essential for the quality of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) dose delivery. Task Group (TG) 142 provides a quality assurance (QA) procedure for MLC position. Our study investigated the QA validation of the mechanical leaf gap measurement and the maintenance procedure. Two $VitalBeam^{TM}$ systems were evaluated to validate the acceptance of an MLC position. The dosimetric leaf gaps (DLGs) were measured for 6 MV, 6 MVFFF, 10 MV, and 15 MV photon beams. A solid water phantom was irradiated using $10{\times}10cm^2$ field size at source-to-surface distance (SSD) of 90 cm and depth of 10 cm. The portal dose image prediction (PDIP) calculation was implemented on a treatment planning system (TPS) called $Eclipse^{TM}$. A total of 20 VMAT plans were used to confirm the accuracy of dose distribution measured by an electronic portal imaging device (EPID) and those predicted by VMAT plans. The measured leaf gaps were 0.30 mm and 0.35 mm for VitalBeam 1 and 2, respectively. The DLG values decreased by an average of 6.9% and 5.9% after mechanical MLC adjustment. Although the passing rates increased slightly, by 1.5% (relative) and 1.2% (absolute) in arc 1, the average passing rates were still within the good dose delivery level (>95%). Our study shows the existence of a mechanical leaf gap error caused by a degenerated MLC motor. This can be recovered by reinitialization of MLC position on the machine control panel. Consequently, the QA procedure should be performed regularly to protect the MLC system.

Acceptance Test and Quality Control of Radiotherapy Treatment Simulator (의료용 모의치료기의 품질관리에 관한 연구)

  • 신동호;박성용;신동오;최진호;김유현;권수일
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.90-97
    • /
    • 2002
  • The simulator which has a identical geometry with radiotherapy equipments, is a essential equipment to accomplish optimized radiotherapy plan through simulation by using diagnostic low energy X-ray. A Radiotherapy simulator has a combined technology from the therapeutic and diagnostic radiology and needs a periodical test for mechanical and optical properties, X-ray generator, image intensifier of simulator to keep the proper maintenance and radiation safety. Hence, tests were done and classified as i) mechanical and optical parameter for the gantry, collimator, and couch ii) key performance of the X-ray generator such as a kVp, mAs, and timer iii) performance of the image intensifier such as a resolution and contrast for three kinds of simulator, common use in clinic. The above result of tests will be applied to the acceptance test and periodical quality assurance procedure.

  • PDF

Changes according to the geometry of the shield using MCNP code system (MCNP코드 시스템을 이용한 차폐물 geometry에 따른 결과 변화에 대한 연구)

  • Kang, Ki-byung;Lee, Nam-ho;Hwang, Young-kwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1031-1033
    • /
    • 2013
  • Radiation protection, as well as finding the location of the radiation source, such as the Fukushima radiation leak accident, it is important for the early and safe disposal of nuclear accident. The three-dimensional position of the radiation source detection distance of the radiation source can provide additional information to the existing radiation detectors radiation of a two-dimensional position detection function and then it can play a decisive role in the radiation contaminant removal and decontamination work. In this research, three-dimensional semiconductor sensor based on dual radiation detectors radiation source device visible part of the research and development of efficient radiation sensor unit on the design of the shielding structure.The lightweight, high-efficiency radiation source locator implementation was attempted for the structure and thickness of the shielding and collimator to perform the simulation of the radiation shielding for the various parameters of the shape model through design the optimal structure of the MCNP-based heavy-duty tungsten shielding, lead shielding The results of this study, is a compact, lightweight three-dimensional radiation source detection and future of silicon - based sensors will be used in the study.

  • PDF

Development of a Small Gamma Camera Using NaI(Tl)-PSPMT or Breast Imaging (NaI(Tl) 섬광결정과 위치민감형 광전자증배관을 이용한 유방암 진단용 소형 감마카메라 개발)

  • Kim, J.H.;Choi, Y.;Kwon, H.S.;Kim, H.J.;Kim, S.E.;Choe, Y.S.;Kim, M.H.;Joo, K.S.;Kim, B.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.365-368
    • /
    • 1997
  • We are developing a small gamma camera or imaging malignant breast tumors. The small scintillation camera system consists of NaI(Tl) crystal ($60\;{\times}\;60\;{\times}\;6\;mm^3$) coupled to position sensitive photomultiplier tube (PSPMT), nuclear instrument module (NIM), analog to digital converter (ADC), and personal computer. High quality flood source image and hole mask image were obtained using the gamma camera developed in this study. Breast phantom containing $2{\sim}7\;mm$ diameter spheres was successfully imaged with parallel hole collimator. The obtained image displayed accurate activity distribution over the imaging field of view. Linearity and uniformity correction algorithms are being developed. It is believed that the developed small gamma camera could be useful or detection of malignant breast cancer.

  • PDF

A Study on New Shielding Method for Minimizing Thyroid Oran Dose on Chest Radiography Used Automatic Exposure Control (자동노출조절장치를 이용한 흉부 방사선검사 시 갑상샘 장기선량 최소화를 위한 새로운 차폐 방법에 관한 연구)

  • Joo, Young-Cheol;Hong, Dong-Hee;Han, Beom-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.323-329
    • /
    • 2020
  • The purpose of this study is to investigate the effect of radiation shielding on the thyroid organ dose and image quality during Chest PA examination using automatic exposure control system. This study was conducted in the patient posture and examination conditions such as Chest PA using human model phantom. An experiment without shielding was set as a control group (non) and the cases of using paper coated with a contrast agent (contrast) and bismuth (bismuth) were used as experimental groups. Compared to non-shielded(non), the dose at bismuth increased about 7% in C(cervical vertebrae)5 and C6 and 14% in C7 and contrast showed dose increases of about 17 to 19% in C5 and C6 and about 21% in C7. As a result of the image quality comparison, when measured in the center of the cervical vertebrae, both SNR and CNR in bismuth increased about 40% higher than non, and contrast showed about 8 to 9% improvement. Compared with soft tissues of the cervix, bismuth reduced SNR by about 15% and CNR by about 13%, in contrast, SNR decreased by 11%, and CNR decreased by about 10%. In the Chest PA using AEC, the method of using the shield in front of the collimator has the advantage to observe the anatomical structure of the neck area well compared to the method using the lead. However, the dose at the neck can be increased by 7-21% depending on shielding materials.

Variation of Effective SSD According to Electron Energies and Irradiated Field Sizes (전자선 에너지 및 조사야에 따른 유효선원 피부 간 거리 변화)

  • Yang, Chil-Yong;Yum, Ha-Yong;Jung, Tae-Sik
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.157-163
    • /
    • 1987
  • It is known that fixed source to skin distance (SSD) cannot be used when the treatment field is sloped or larger than the size of second collimator in electron beam irradiation and inverse square law using effective ssd should be adopted. Effective SSDs were measured in different field sizes in each 6, 9, 12, 15 and 18MeV electron energy by suing NELAC 1018D linear accelerator of Kosin Medical Center. We found important parmeters of effective SSD. 1. Minimum effective SSD was 58.8cm in small field size of $6\pm6cm$ and maximum effective SSD was 94.9cm in large field size of $25\pm25cm$, with 6MeV energy. It's difference was 36.1cm. The dose rate at measuring point was quite different even with a small difference of SSD in small field $(6\times6cm)$ and low energy (6 MeV). 2. Effective SSD increased with field size in same electron energy. 3. Effective SSDs gradually increased with the electron energies and reached maximum at 12 or 15 MeV electron energy and decreased again at 18MeV electron energy in each identical field size. And so the effective SSD should be measured in each energy and field size for practical radiotherapy.

  • PDF

Evaluation of Depth Dose and Surface Dose According to Treatment Room Wall Distance (방사선 치료실 벽면 거리에 따른 심부선량과 표층선량 평가)

  • Je, Jae-Yong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.121-125
    • /
    • 2011
  • This study was intended to evaluate the surface dose and depth dose of according to the distance of the treatment room wall. High energy photon beams from linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. The scattered radiation measured by thermoluminescence dosimeter(TLD). Linear accelerators rotation center of the four walls(X) distance was measured to be 236, 272, 303, and 337 cm. The result of 100 cGy and 200 cGy of 6 MV photon irradiation, surface dose was 0.49, 0.83 mSv at 236 cm of the shortest distance to the wall, In 272 cm 0.41, 0.53 mSv, 303 cm in the 0.28, 0.57 mSv, and 337 cm distance from the wall in the 0.33, 0.76 mSv surface dose respectively. There was remarkable difference in the surface dose among the treatment room wall distance. The results of useful data in relation to stochastic effect for radiation therapy patients.

The Study on Dose Calculations for Blocked Fields (차폐 조사면에서 선량계산에 관한 연구)

  • 정동혁;김진기;오영기;신교철;김기환;김정기;문성록;김정수;박인규
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.133-140
    • /
    • 2001
  • The dose calculations for blocked fields were studied. The shielding block correction factors(K$_{b}$) as a function of collimator and blocked field size(r$_{c}$ and r$_{b}$) were measured. A simplified $K_{b}$ as a function of $A_{r}$ (the A/P ratio of r$_{b}$ to r$_{c}$) was determined by measured data and a fitting function for $K_{b}$ was obtained. We found that the corrections of $K_{b}$ for blocked fields in MU(monitor units) calculations need not take into account in common case of $A_{r}$ \ulcorner1 but the errors will be 3.5% in particular case such as $A_{r}$ = 0.5. These results imply that the shielding block correction for blocked fields in clinical dose calculations must be considered.

  • PDF

Assessment of the Optic-guided Patient Positioning for Spinal Stereotactic Radiosurgery Using Novalis ExacTrac System (노발리스 ExacTrac system을 이용한 척추 정위 방사선수술 방법 평가)

  • 이동준;손문준;최광영;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.218-223
    • /
    • 2002
  • Stereotactic radiosurgery for intracranial lesion is well established since the Lars Leksell first introduced radiosurgery concept in 1951 Its use in the treatment of spinal lesion has been limited by the availability of effective immobilization devices. The first clinical experience of the spinal stereotactic radiosurgery technique was reported by Hamilton AJ. in 1995. Recently, Optic-guided patient positioning technique for extracranial stereotactic radiosurgery was developed and reported. This study is for assess the target positioning accuracy of the optic guided patient positioning system Exactrac (BrainLab., Inc, Germany). We have designed phantom for assess the accuracy of spinal stereotactic radiosurgery The infrared reflective body markers attached to the relatively immobile part of the body and a series of 2 mm CT images was taken. The image sets were transferred to the planning computer. During the radiosurgery treatment, we measure the real-time display showing the positioning values from Exactrac computer. And we compare the isocenter deviation from irradiated center point of the film which was mounted on the lesion site of the phantom and pin hole site of that film. The accuracy of the ExacTrac system in positioning a target point shows enough for the clinical applications.

  • PDF

Non-contact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer (광섬유 Sagnac 간섭계를 이용한 초음파의 비접촉식 감지)

  • Lee, Jeong-Ju;Jang, Tae-Seong;Lee, Seung-Seok;Kim, Yeong-Gil;Gwon, Il-Beom;Lee, Wang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1400-1409
    • /
    • 2001
  • This paper describes a fiber optic sensor suitable for non-contact detection of ultrasonic waves. This sensor is based on a fiber optic Sagnac interferometer. Quadrature phase bias between two interfering laser beams in Sagnac loop is introduced by a polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output versus phase bias. This method eliminates a digital signal processing for detection of ultrasonic waves using Sagnac interferometer. Interference intensity is affected by the frequency of ultrasonic waves and the time delay of Sagnac loop. Collimator is attached to the end of the probing fiber to focus the light beam onto the specimen surface and to collect the reflected light back into the fiber probe. Ultrasonic waves produced by conventional ultrasonic transducers are detected. This fiber optic sensor based on Sagnac interferometer is very effective for detection of small displacement with high frequency such as ultrasonic waves used in conventional non-destructive testing.