• Title/Summary/Keyword: Colliding

Search Result 162, Processing Time 0.027 seconds

The configuration analysis for the storyboard image (스토리보드 이미지 구성 분석)

  • Lim, Woon-Joo
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.403-408
    • /
    • 2013
  • The configuration analysis for the image appeared in the storyboard as the 1st stage to change the scenario to the image expressed the visual phenomenon image starting from the literalism. The simultaneity of description on the interpretative level of the narrative description may describe various information multiple simultaneously, the relationship has been presented as a lot of these information has been weaved as one episode. The incident time of narrative description as the scene described mainly objectively and illustratively has been used usefully to present the accurate information for characters or incidents. The time series of narrative description appeared as one episode by expressing various spaces or images under the continuity of flow according to the time. The collision image seen from the angle of internal ignition played a role to create the meaning colliding into each other or interconnecting symbolic effects appeared as respectively fragmented image, the continuity of space played a role of expressing the different symbol when the image of completely different space is connected to one context, the continuity of time as well makes a different symbolism by interpreting symbols appeared as each images under the flow of time. These results show that the narrative description may be expressed in accordance with the narrative structure from the viewpoints of narrative description, but the internal ignition may be interpreted through the cultural and periodical background widely known in those years based on the experience and information capability the audiences are keeping not by any descriptive structure. Images appeared in the internal ignition appeared by colliding into each other or amplifying mutually no related scenes and revealing the overall symbolism by reinterpreting again.

Numerical Analysis of Synchronous Edge Wave Known as the Driving Mechanism of Beach Cusp (Beach Cusp 생성기작으로 기능하는 Synchronous Edge Wave 수치해석)

  • Lee, Hyung Jae;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.409-422
    • /
    • 2019
  • In this study, we carried out the 3D numerical simulation to investigate the hydraulic characteristics of Synchronous Edge wave known as the driving mechanism of beach cusp using the Tool Box called the ihFoam that has its roots on the OpenFoam. As a wave driver, RANS (Reynolds Averaged Navier-Stokes equation) and mass conservation equation are used. In doing so, we materialized short-crested waves known as the prerequisite for the formation of Synchronous Edge waves by generating two obliquely colliding Cnoidal waves. Numerical results show that as can be expected, flow velocity along the cross section where waves are focused are simulated to be much faster than the one along the cross section where waves are diverged. It is also shown that along the cross section where waves are focused, up-rush is moving much faster than its associated back-wash, but a duration period of up-rush is shortened, which complies the typical characteristics of nonlinear waves. On the other hand, due to the water-merging effect triggered by the redirected flow toward wave-diverging area at the pinacle of run-up, along the cross section where waves are diverged, offshore-ward velocity is larger than shore-ward velocity at the vicinity of shore-line, while at the very middle of shoaling process, the asymmetry of flow velocity leaned toward the shore is noticeably weakened. Considering that these flow characteristics can be found without exception in Synchronous Edge waves, the numerical simulation can be regarded to be successfully implemented. In doing so, new insight about how the boundary layer streaming occur are also developed.

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.

Two-Dimensional Wave Propagation Analysis of Impact Phenomena (이차원(二次元) 파전파(波傳波) 이론(理論)에 의한 충돌현상(衝突現狀) 해석(解析))

  • Lee, Sang Ho;Ahn, Byoung Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.245-255
    • /
    • 1994
  • A two-dimensional Lagrangian finite-difference computer program is developed for the wave propagation analysis of impact phenomena. The numerical scheme is the standard method originally proposed by Von Neuman and Richtmyer, using artificial viscosity to smooth shock fronts. The material model used in the study is the standard hydrodynamic-elastic-plastic relations with Von-Mises yield criterion. A test configuration consisted of a target and a projectile were calculated to understand the response of a colliding event. However, the computer code is in plane strain, the calculations were intended for generating the qualitative features of the model behaviors. Nevertheless, the computational results were consistent with the experimental observations and provided a rational basis to interpret the modes of failures.

  • PDF

A Study on the Installation of a Barrier to Prevent Large-Scale Traffic Accidents in Tunnel

  • Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.161-168
    • /
    • 2019
  • Traffic accidents in tunnel can lead to large traffic accidents due to narrow and dark road characteristics. Therefore, special care of the driver is required when is driving in a tunnel. However, accidents can happen at any time. In the event of an accident, a narrow road structure may lead to a second accident. Therefore, all facilities installed inside the tunnel should be allowed to minimize damage in the event of an accident. We confirmed the safety of the collision target through the action of the sedan, Sport Utility Vehicle (SUV) and truck when the vehicle crashed into a stairway installed on the tunnel emergency escape route, and when a concrete barrier or guard rail was installed in front of the stairway. The behavior of the vehicle has resulted in a total of three results: rollover or rollover, change of speed and angle of the vehicle after collision. The sedan and SUV were the most secure when colliding with the guardrail, but considering the truck as a whole, concrete barriers were judged to be the most suitable for minimizing damage from the first accident and reducing the risk of the second accident.

Compliant Ultrasound Proximity Sensor for the Safe Operation of Human Friendly Robots Integrated with Tactile Sensing Capability

  • Cho, Il-Joo;Lee, Hyung-Kew;Chang, Sun-Il;Yoon, Euisik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.310-316
    • /
    • 2017
  • The robot proximity and tactile sensors can be categorized into two groups: grip sensors and safety sensors. They have different performance requirements. The safety sensor should have long proximity range and fast response in order to secure enough response time before colliding with ambient objects. As for the tactile sensing function, the safety sensor need to be fast and compliant to mitigate the impact from a collision. In order to meet these requirements, we proposed and demonstrated a compliant integrated safety sensor suitable to human-friendly robots. An ultrasonic proximity sensor and a piezoelectric tactile sensor made of PVDF films have been integrated in a compliant PDMS structure. The implemented sensor demonstrated the maximum proximity range of 35 cm. The directional tolerance for 30 cm detection range was about ${\pm}15^{\circ}$ from the normal axis. The integrated PVDF tactile sensor was able to detect various impacts of up to 20 N in a controlled experimental setup.

Analysis of Protection Capability of a Conical Shaped Protector (유한요소해석을 이용한 원뿔형 대응체 방호 효과 분석)

  • Kim, Heecheol;Kim, Jongbong;Jeong, JinHwan;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.563-571
    • /
    • 2018
  • In order to effectively protect a penetrator, the conically shaped protector was proposed and the protection capability was investigated. The collision and penetration of the penetrator with the protector were analyzed using dynamic finite element analysis. The post impact behaviors of the penetrator, i.e., flying velocity and the change of attitude angle, were monitored to investigate the protection capability. The flying velocity and the attitude angle are used to investigate the deviation and the penetration power respectively. The effect of rotation speed of the protector and the collision position on the protection capability is investigated in the viewpoint of deviation and attitude angle when penetrator colliding with our tank.

A Study on Numerical Analysis and Wall Thinning Effect in Accordance with the Eddy Current of MFIV Lower Body (주급수격리밸브 하부몸체의 와류현상에 따른 감육영향 및 수치해석 연구)

  • Hwang Kyeong-Mo;Jin Tae-Eun;Kim Kyung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.707-714
    • /
    • 2006
  • A numerical analysis study has performed in terms of fluid dynamics to identify the wall thinning generated in the main feedwater isolation valve body of a nuclear power plant. To review the relations between flow characteristics and the wall thinning induced by flow accelerated corrosion (FAC), numerical analysis using FLUENT code and ultrasonic tests (UT) were performed. The local velocities according to the analysis results were compared with the distribution of the measured wall thickness by ultrasonic tests. The comparison results show that the local velocity in the x-direction had no correlation with the wall thinning but the local velocity in the y-direction and turbulence intensity had a great influence on that. These results provide a good match to those of the previous studies - locations colliding vertically against components undergo severe wall thinning. These results may be utilized to the design modification and the wall thinning management for main feedwater isolation valves for preventing the wall thinning degradation.

Effects of spray nozzles on the structure of twin spray (이중 분무의 중첩 구조에 미치는 분무 노즐의 영향)

  • Jurng, J.S.;Park, C.B.;Im, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.51-59
    • /
    • 1996
  • An experiment was carried out on the structure of twin spray from pressurize-swirl nozzles, in order to investigate the effect of different size of spray nozzles on the characteristics of the overlap of two single sprays, for example, mean diameter, number density, and spatial distribution of flow rate. Using image processing method, the distributions of size and velocity of droplets of a single spray and twin spray were measured and compared to investigate the overlapping effect of two identical sprays. Comparing experimental results from a twin-spray with those from two-single sprays shows that the flow rate distribution of the twin-spray was concentrated around the midst of the overlapping region of two sprays. In this region, Sauter mean diameter (SMD) did not change much in the twin spray from 6032 nozzles, but it was smaller by 10 micrometers in the twin-spray than two-single sprays from 60063 nozzles. In spite of large difference in Weber numbers of the colliding sprays between the 60063 and 6032 nozzles, the phenomena did not have a big change in the overlapping region of twin spray. This shows that in the collision between droplets from two single spray in the overlapping region to cause the disruption of droplets, the size distribution of spray droplets was also important as well as Weber number.

  • PDF

Collision Avoidance for an Autonomous Mobile Robot Using Genetic Algorithms (유전 알고리즘을 이용한 자율 주행 로봇의 장애물 호피)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 1998
  • Navigation is a method to direct a mobile robot without collision when traversing the environment. This is to reach a destination without getting lost. In this paper, global and local path planning in fixed obstacle and moving obstacle using genetic algorithm are presented. First, mobile robot searches optimal global path using genetic algorithm without falling into local minima. Then if it finds a unknown obstacle, it searches new path without crashing obstacle. Also if there is a moving obstacle, mobile robot searches new optimal path without colliding with the obstacles. Various simulation results show the proposed algorithm can search a shortest path effectively.

  • PDF