• Title/Summary/Keyword: Collector Method

Search Result 259, Processing Time 0.031 seconds

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application (광촉매 응용을 위한 TiO2 나노 섬유의 미세구조 제어)

  • Lee, Chang-Gyu;Kim, Wan-Tae;Na, Kyeong-Han;Park, Dong-Cheol;Yang, Wan-Hee;Choi, Won-Youl
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.417-421
    • /
    • 2018
  • $TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.

A Study on Acquisition of Overhead Line Location Information of Pantograph for E-Highway (E-Highway를 위한 팬터그래프의 가공선 위치정보 취득에 관한 연구)

  • Gwang-Cheol Song;Jun-Jae An;Tuan-Vu Le;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.915-923
    • /
    • 2023
  • As environmental regulations on carbon emissions are strengthened worldwide, the existing internal combustion engine-centered automobile industry is being reformed. In particular, large buses and large cargo trucks are pointed out as one of the main causes of environmental destruction due to excessive carbon emissions. The E-Highway power collection system, which has recently been proposed as a solution, uses the vehicle's battery as a backup power source or regenerative braking, depending on whether the pan head of the pentograph installed in the vehicle is in contact with the overhead line. It is used to store the excess energy generated. However, wear through contact due to continuous contact reduces the current collection effect and causes failure. In this paper, by using the current difference, the horizontal position information of the panhead in contact with the overhead line is acquired, thereby reducing the abrasion of the conductor and the panhead Make it possible to follow the overhead line. The position estimation method proposed in this paper simply configures a device that can detect the position of the overhead line of the pantograph by the difference in resistance. It is economical and has the advantage of reducing the volume. The characteristics of the pantograph estimating the location of overhead lines were analyzed using the difference between the two currents of the current collector, the feasibility of the positioning estimation system was verified through simulations and experiments.

A Study on the Application Plan of Air-Conditioning and Renewable Complex Systems in the Small Schools. (소규모 학교의 냉난방 및 신재생에너지복합시스템 적용방안에 관한 연구)

  • Kim, Ji-Yeon;Park, Hyo-Soon;Hong, Sung-Hee;Kim, Seong-Sil;Hur, Inn-Ku;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.946-951
    • /
    • 2009
  • The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector $94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW.

  • PDF

A Study on the Application Plan of Air-Conditioning and New and Renewable Systems in the Large High Schools (대규모 고등학교의 냉난방 및 신재생에너지시스템 적용방안에 관한 연구)

  • Kim, Ji-Yeon;Park, Hyo-Soon;Kim, Seong-Sil;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.564-574
    • /
    • 2009
  • The study is conducted to study a new, optimum and new and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and hot water supply energy saving efficiencies for educational facilities. Therefore, this research implemented a study on the new and renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 475.6 kW+highly efficient electronic cooling/heating device(EHP) 545.2 kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 261kW+solar heat collector $240\;m^2$+highly efficient electronic cooling/heating device(EHP) 759.8 kW.

A Study on Optimum Design of an Axial Cylcone structure using Response Surface Method (반응표면법을 활용한 축류형 사이클론 구조 최적화 설계에 관한 연구)

  • Cho, Jinill;Yun, Junho;Cho, Yeongkwang;Seok, Hyunho;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2021
  • Ultrafine dust, which is emitted from industrial factories or all kinds of vehicles, threatens the human's respiratory system and our environment. In this regard, separating airborne particles is essential to mitigate the severe problem. In this work, an axial cyclone for the effective technology of eliminating harmful dust is investigated by numerical simulation using Ansys 2020, Fluent R2. In addition, the optimized structure of the cyclone is constructed by means of multi objective optimization based on the response surface method which is a representative method to analyze the effect of design parameter on response variables. Among several design parameters, the modified length of the vortex finder and dust collector is a main point in promoting the performance of the axial cyclone. As a result, the optimized cyclone exhibits remarkable performance when compared to the original model, resulting in pressure drop of 307 Pa and separator efficiency of 98.5%.

A Study on the System Performance Prediction Method of Natural Circulation Solar Hot Water System (자연순환식 태양열 급탕 시스템의 성능 추정 방법에 관한 연구)

  • Youn, Suck-Berm;Chun, Moon-Hyun
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.37-53
    • /
    • 1987
  • This study has been prepared for the purpose of developing the system performance prediction method of natural circulation solar hot water system. The storage tank of the natural circulation solar hot water system equipped with flat-plate solar collector is located at higher elevation than the solar collectors. Therefor, the storage tank temperature distribution formed accordance with configuration of storage tank by flow rate of circulating fluid affect system collection efficiency. In this study measure the storage tank temperature distribution with various experimental system under real sun condition and present the theoretical prediction method of the storage tank temperature. Moreover measure the flow rate not only day-time but also night-time reverse flow rate with die injection visual flow meter. Main conclusion obtain from the present study is as follows; 1) The storage tank temperature distribution above the connecting pipe connection position is the same as that of the fully mixed tank and below the connection position is the same as that of stratified tank. 2) The system performance sensitive to the storage tank temperature distribution. Therefore detailed tank model is necessary. Average storage tank temperature can be calculate 3% and storage tank temperature profile can get less than 10% difference with this model system.

  • PDF

Heat Losses from the Receivers of a Multifaceted Parabolic Solar Energy Collecting System

  • Seo, Taebeom;Ryu, Siyoul;Kang, Yongheock
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1185-1195
    • /
    • 2003
  • Heat losses from the receivers of a dish-type solar energy collecting system at the Korea Institute of Energy Research (KIER) are numerically investigated. It is assumed that a number of flat square mirrors are arranged on the parabolic dish structure to serve as a reflector. Two different types of receivers, which have conical and dome shapes, are considered for the system, and several modes of heat losses from the receivers are thoroughly studied. Using the Stine and McDonald model convective heat loss from a receiver is estimated. The Net Radiation Method is used to calculate the radiation heat transfer rate by emission from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method is used to predict the radiation heat transfer rate from the reflector to the receiver. Tracing the photons generated, the reflection loss from the receivers can be estimated. The radiative heat flux distribution produced by a multifaceted parabolic concentrator on the focal plane is estimated using the cone optics method. Also, the solar radiation spillage around the aperture is calculated. Based on the results of the analysis, the performances of two different receivers with multifaceted parabolic solar energy collectors are evaluated.

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

Production of Carbonized Rice Husks by a Cyclone Combustor(I) (사이클론 연소기를 이용한 탄화왕겨의 제조(I))

  • 고길표;노수영
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • Carbonized rice husk(char from rice husk) can be used to improve soils for planting, seedlings, horiculture, pomiculture and truck gardening. Although it is not a fertilizer in nature, it stimulates the growth of plants. Carbonized rice husk is highly recommended for raising soil/water temperature, keeping moisture and aerating roots of plants. The objective of this study was to develop the effective production method of carbonized rice husks by a non-slagging vertical cyclone combustor. A cyclone combustor w vortex collecor Pocket in addition to central collector pocket was selected and tested. Isothermal tests and mixed firing with LPG and rice husk were performed in order to characterize the system. hut rice husk was used during the isothermal test to find the mass collected of rice husk. It was impossible to ignite rice husk itself over the experimental conditions considered in this experiment. The composition of original and carbonized rice husks was analyzed by the ultimate analysis. With the air flow rate of 20 ㎥/h, LPG flow rate of 0.45 1/min, the required carbonized rice husk could be obtained.

  • PDF