• Title/Summary/Keyword: Collective pitch control

Search Result 14, Processing Time 0.026 seconds

Flight Dynamic Identification of a Model Helicopter using CIFER®(I) - Flight test for the acquisition of transmitter input data - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (I) - 조종기 제어 입력 데이터 획득을 위한 비행시험 -)

  • Park, Hee-Jin;Koo, Young-Mo;Bae, Yeoung-Hwan;Oh, Min-Suk;Yang, Chul-Oh;Song, Myung-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.467-475
    • /
    • 2011
  • Aerial spraying technology using a small unmanned helicopter is an efficient and practical tool to achieve stable agricultural production to improve the working condition. An attitude controller for the agricultural helicopter would be helpful to aerial application operator. In order to construct the flight controller, a state space model of the helicopter should be identified using a dynamic analysis program, such as CIFER$^{(R)}$. To obtain the state space a model of the helicopter, frequency-sweep flight tests were performed and time history data were acquired using a custom-built stick position transmitter. Four elements of stick commands were accessed for the collective pitch (heave), aileron (roll), elevator (pitch), rudder (yaw) maneuvers. The test results showed that rudder stick position signal was highly linear with rudder input channel signal of the receiver; however, collective pitch stick position signal was exponentially manipulated for the convenience of control stick handling. The acquired stick position and flight dynamic data during sweep tests would be analyzed in the followed study.

A Fuzzy PI Controller for Pitch Control of Wind Turbine (풍력 발전기 피치 제어를 위한 퍼지 PI 제어기)

  • Cheon, Jongmin;Kim, Jinwook;Kim, Hongju;Choi, Youngkiu;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • When the wind speed rises above the rated wind speed, the produced power of the wind turbines exceeds the rated power. Even more, the excessive power results in the undesirable mechanical load and fatigue. A solution to this problem is pitch control of the wind turbines. This paper presents a systematic design method of a collective pitch controller for the wind turbines using a discrete fuzzy Proportional-Integral (PI) controller. Unlike conventional PI controllers, the fuzzy PI controller has variable gains according to its input variables. Generally, tuning the parameters of fuzzy PI controller is complex due to the presence of too many parameters strongly coupled. In this paper, a systematic method for the fuzzy PI controller is presented. First, we show the fact that the fuzzy PI controller is a superset of the PI controller in the discrete-time domain and the initial parameters of the fuzzy PI controller is selected by using this relationship. Second, for simplicity of the design, we use only four rules to construct nonlinear fuzzy control surface. The tuning parameters of the proposed fuzzy PI controller are also obtained by the aforementioned relationship between the PI controller and the fuzzy PI controller. As a result, unlike the PI controller, the proposed fuzzy PI controller has variable gains which allow the pitch control system to operate in broader operating regions. The effectiveness of the proposed controller is verified with computer simulations using FAST, a NREL's primary computer-aided engineering tool for horizontal axis wind turbines.

Design of Individual Pitch Control and Fatigue Analysis of Wind Turbine (풍력발전시스템 개별피치제어설계 및 피로해석에 관한 연구)

  • Jeon, Gyeong Eon;No, Tae Soo;Kim, Guk Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Structural loading on a wind turbine is due to cyclic loads acting on the blades under turbulence and periodic wind field. The structural loading generates fatigue damage and fatigue failure of the wind turbine. The individual pitch control(IPC) is an efficient control method for reducing structural loading. In this paper, we present an IPC design method using Decentralized LQR(DLQR) and Disturbance accommodating control(DAC). DLQR is used for regulating rotor speed and DAC is used for canceling out disturbances. The performance of the proposed IPC is compared with CPC, which was designed with a gain-scheduled PI controller. We confirm the effect of fatigue load reduction with the use of damage equivalent load(DEL).

Characteristics of Filters for Signal Processing Applied to Wind Turbine Controllers (풍력발전 제어에 적용되는 계측신호처리 필터에 대한 특성 고찰)

  • Moon, Seok-Jun;Shin, Yun-Ho;Chung, Tae-Young;Rim, Chae-Whan;Ryu, Ji-Yune
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.58-65
    • /
    • 2011
  • In variable-speed variable-pitch wind turbines, the conventional approach for controlling power-production operation relies on a generator-torque controller and a rotor-collective blade-pitch controller. Both controllers use the generator speed measurement as the sole feedback input. In order to mitigate unwanted excitation of the control system, many filters are adopted. In this study, the characteristics of some filters for signal processing are investigated based on frequency response function. They include low-pass filters, band-pass filters, and notch filters. Especially, this study focuses on design parameters of their filters.

Characteristics of Filters for Signal Processing Applied to Wind Turbine Controllers (풍력발전 제어에 적용되는 계측신호처리 필터에 대한 특성 고찰)

  • Moon, Seokjun;Shin, Yunho;Chung, Taeyoung;Rim, Chaewhan;Ryu, Jiyune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • In variable-speed variable-pitch wind turbines, the conventional approach for controlling power-production operation relies on a generator-torque controller and a rotor-collective blade-pitch controller. Both controllers use the generator speed measurement as the sole feedback input. In order to mitigate unwanted excitation of the control system, many filters are adopted. In this study, the characteristics of some filters for signal processing are investigated based on frequency response function. They include low-pass filters, band-pass filters, and notch filters. Especially, this study focuses on design parameters of their filters.

  • PDF

Aerodynamics Characteristics of Quad-Rotor Blade (쿼드로터 블레이드의 공력특성)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.43-46
    • /
    • 2008
  • Quad-Rotor, which consists of four blades, performs a flight task by controling each rotation speed of the four blades. Quad-Rotor blade making no use of cyclic pitch or collective one is a type of fixed-wing as different from helicopter blade. Although, Quad-Rotor is simple and easy to control for those reasons, blade configuration of the fixed wing is one of the critical factors in determining the performance of Quad-Rotor. In the present study, coefficients for thrust and power of Quad-Rotor blade were derived from the data acquired by using 6-component balances. Firstly, Measurements for aerodynamic force were conducted at various pitch angles (i.e., from 0$^{\circ}$ to 90$^{\circ}$ with the interval of 10$^{\circ}$). The blade used in this experiment has aspect ratio of 6 and chord length of 35.5 mm. Secondly, assembled-blade, which was an integral blade but divided into many pieces, was used in order to test aerodynamic forces along twist angles. The curve of thrust coefficient along pitch angle indicates a parabola form. Stall which occurs during wind tunnel test to calculate lift coefficient of airfoil does not generate. When deciding the blade twist angle, structural stability of blade should be considered together with coefficients of thrust and power. Those aerodynamic force data based on experimental study will be provided as a firm basis for the design of brand-new Quad-Rotor blade.

  • PDF

Streamlined Rotors Mini Rotorcraft : Trajectory Generation and Tracking

  • Beji Lotfi;Abichou Azgal
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.87-99
    • /
    • 2005
  • We present in this paper the stabilization (tracking) with motion planning of the six independent configurations of a mini unmanned areal vehicle equipped with four streamlined rotors. Naturally, the yaw-dynamic can be stabilized without difficulties and independently of other motions. The remaining dynamics are linearly approximated around a small roll and pitch angles. It will be shown that the system presents a flat output that is likely to be useful in the motion generation problem. The tracking feedback controller is based on receding horizon point to point steering. The resulting controller involves the lift (collective) time derivative for what flatness and feedback linearization are used. Simulation tests are performed to progress in a region with approximatively ten-meter-buildings.

Investigation of the Downwash Induced by Rotary Wings in Ground Effect

  • Tanabe, Yasutada;Saito, Shigeru;Ooyama, Naoko;Hiraoka, Katsumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.20-29
    • /
    • 2009
  • There are concerns about the influence of the gust wind caused by helicopters affecting the moving vehicles while hovering over the road during rescue activities. For the understanding of such complicated flow. numerical simulation of a rotor hovering above the ground has been carried out, changing the rotor/ground clearances. The rotor thrust is kept constant. and the rotor control is determined by trim adjustments incorporated into the CFD algorithm. Collective pitch angle and the required power decreases with the rotor/ground clearance which agrees with experience. Changes of the flowfield near the rotor with regard to the rotor height are investigated based on the calculated results.

Flight Dynamic Identification of a Model Helicopter Using CIFER® (III) - Transfer Function Analysis - (CIFER ® 를 이용한 무인 헬리콥터의 동특성 분석 (III) - 전달함수 해석 -)

  • Bae, Yeong-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.192-200
    • /
    • 2012
  • Purpose: Aerial application of chemicals with an agricultural helicopter allows for precise and timely spraying and reduces working labor and pollution. An attitude controller for an agricultural helicopter would be helpful to aerial application operator. The objectives of this paper are to determine the transfer function models and to estimate the handling qualities of a bare-airframe model helicopter. Methods: Transfer functions of a model unmanned helicopter were estimated by using NAVFIT and DERIVID modules of the $CIFER^{(R)}$ program to the time history data of frequency sweep flight tests. Control inputs of the transfer functions were elevator, aileron, rudder and collective pitch stick positions and the outputs were resulting on-axis movements of the fuselage. Results: Minimum realization of the transfer functions for pitch rate output to elevator control input and roll rate output to aileron control input produced second order transfer functions with undamped natural frequencies around 3.0 Hz and damping ratios of 0.139 and 0.530, respectively. The equivalent time delays of the transfer functions ranged from 0.16 to 0.44 second. Sensitivity analysis of the proposed parameters allowed derivation of minimal realization of the transfer functions. Conclusions: Handling quality of the model helicopter was addressed based on the eigenvalues of the transfer functions, corresponding undamped natural frequencies with damping ratios. The equivalent time delays of the lateral-directional motion ranged from 0.16 to 0.44 second, longer than the 0.1 to 0.15 second requirement for well-controlled typical manned aerial vehicles.