• Title/Summary/Keyword: Collapse time

Search Result 574, Processing Time 0.031 seconds

Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Vetr, Mohammad G.
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.277-296
    • /
    • 2013
  • Margin of safety against potential of progressive collapse is among important features of a structural system. Often eccentricity in plan of a building causes concentration of damage, thus adversely affects its progressive collapse safety margin. In this paper the progressive collapse of symmetric and asymmetric 3-story reinforced concrete ordinary moment resisting frame buildings subjected to the earthquake ground motions are studied. The asymmetric buildings have 5%, 15% and 25% mass eccentricity. The distribution of the damage and spread of the collapse is investigated using nonlinear time history analyses. Results show that potential of the progressive collapse at both stiff and flexible edges of the buildings increases with increase in the level of asymmetry in buildings. It is also demonstrated that "drift" as a more easily available global response parameter is a good measure of the potential of progressive collapse rather than much difficult-to-calculate local response parameter of "number of collapse plastic hinges".

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.649-665
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.691-707
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Efficient and automated method of collapse assessment

  • Qi, Yongsheng;Gu, Qiang;Li, Dong
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.561-570
    • /
    • 2012
  • Seismic collapse analysis requires efficient and automated method to perform thousands of time history analyses. The paper introduced the advantages of speed and convergence property of explicit method, provided a few techniques to accelerate speed of calculation and developed an automated procedure for collapse assessment, which combines the strong capacity of commercial explicit finite element software and the flexible, intelligent specialties of control program written in FORTRAN language aiming at collapse analysis, so that tedious and heavy work of collapse analysis based on FEMAP695 can be easily implemented and resource of calculation can be made the best use of. All the key commands of control program are provided to help analyzers and engineers to cope with collapse assessment conveniently.

Seismic collapse propagation in 6-story RC regular and irregular buildings

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Karimiyan, Morteza;Kashan, Ali Husseinzadeh
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.753-779
    • /
    • 2013
  • One of the most important issues in progressive collapse mechanism of the buildings is evaluation of the collapse distribution in presence of the earthquake loads. Here, collapse propagation is investigated by tracking down the location and type of the collapsed beam and column elements, from the first element to the entire buildings. 6-story reinforced concrete ordinary moment resisting frame buildings with one directional mass eccentricity of 0%, 5%, 15% and 25% are studied to investigate differences among the progressive collapse mechanism of the regular and irregular buildings. According to the results of the nonlinear time history analyses, there are some patterns to predict progressive collapse scenarios in beam and column elements of the similar regular and irregular buildings. Results also show that collapse distribution patterns are approximately independent of the earthquake records.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

Numerical study of progressive collapse in reinforced concrete frames with FRP under column removal

  • Esfandiari, J.;Latifi, M.K.
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.165-172
    • /
    • 2019
  • Progressive collapse is one of the factors which if not predicted at the time of structure plan; its occurrence will lead to catastrophic damages. Through having a glance over important structures chronicles in the world, we will notice that the reason of their collapse is a minor damage in structure caused by an accident like a terrorist attack, smashing a vehicle, fire, gas explosion, construction flaws and its expanding. Progressive collapse includes expanding rudimentary rupture from one part to another which leads to total collapse of a structure or a major part it. This study examines the progressive collapse of a 5-story concrete building with three column eliminating scenarios, including the removal of the corner, side and middle columns with the ABAQUS software. Then the beams and the bottom of the concrete slab were reinforced by (reinforcement of carbon fiber reinforced polymer) FRP and then the structure was re-analyzed. The results of the analysis show that the reinforcement of carbon fiber reinforced polymer sheets is one of the effective ways to rehabilitate and reduce the progressive collapse in concrete structures.

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.