• 제목/요약/키워드: Collapse Probability

검색결과 145건 처리시간 0.024초

교량의 구조특성에 따른 손상확률과 목표연성도 결정 (Damage Probabilities according to the Structural Characteristics of Bridges and the Determination of Target Ductilities)

  • 선창호;이종석;김익현
    • 한국지진공학회논문집
    • /
    • 제14권3호
    • /
    • pp.1-10
    • /
    • 2010
  • 현행의 내진설계의 성능목표는 인명피해를 최소화하기 위한 구조물의 붕괴방지에 있으며 기존구조물의 내진보강도 이를 만족하도록 수행되고 있다. 그러나, 최근의 해외 지진피해사례를 살펴보면 큰 지진에서도 이러한 내진성능목표는 비교적 잘 달성되었지만 엄청난 경제적 손실이 동반되어 새로운 문제점으로 제기되고 있다. 이러한 큰 경제적 손실을 줄이기 위해서는 현행 붕괴방지성능에서 벗어나 구조물의 손상을 제어할 수 있도록 손상확률에 기반하여 내진성능목표를 설정하는 새로운 내진설계개념이 필요하다. 본 연구에서는 다양한 구조적특성을 지닌 교량을 대상으로 하여 비선형지진해석을 수행하여 지진거동특성을 확인하고, 기준손상도에 대한 취약도곡선을 산정하였다. 이로부터 목표손상확률에 따른 교량구조물의 목표연성도의 특성을 분석하였다.

수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제2편: 시스템 파괴확률 산정 (Dynamic Response based System Reliability Analysis of Structure with Passive Damper - Part 2: Assessment of System Failure Probability)

  • 김승민;옥승용
    • 한국안전학회지
    • /
    • 제31권5호
    • /
    • pp.95-101
    • /
    • 2016
  • This study proposes a multi-scale dynamic system reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this second paper, we discuss the control effect of the viscous damper on the seismic performance of the structure-level failure. Since the failure of one structural member does not necessarily cause the collapse of the structural system, we need to consider a set of failure scenarios of the structural system and compute the sum of the failure probabilities of the failure scenarios where the statistical dependence between the failure scenarios should be taken into account. Therefore, this computation requires additional system reliability analysis. As a result, the proposed approach takes a hierarchial framework where the failure probability of a structural member is computed using a lower-scale system reliability with the union set of time-sequential member failures and their statistical dependence, and the failure probability of the structural system is again computed using a higher-scale system reliability with the member failure probabilities obtained by the lower-scale system reliability and their statistical dependence. Numerical results demonstrate that the proposed approach can provide an accurate and stable reliability assessment of the control performance of the viscous damper system on the system failure. Also, the parametric study of damper capacity on the seismic performance has been performed to demonstrate the applicability of the proposed approach through the probabilistic assessment of the seismic performance improvement of the damper system.

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Sadegh, Etedali;Mohammad, Seifi;Morteza, Akbari
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.381-391
    • /
    • 2023
  • The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.

Reliability analysis of braced frames subjected to near field ground motions

  • Sistani, Asma;Asgarian, Behrouz;Jalaeefar, Ali
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.733-751
    • /
    • 2013
  • Near field ground motions have caused several structural damages in recent decades. As a result, seismic codes are being updated with related requirements. In this paper a comparative study on the seismic behavior of concentrically braced frames (CBFs) designed based on different seismic codes is performed. Reliability of various frames with different heights and bracing types are analyzed based on the results of "Incremental Dynamic Analysis" (IDA) under near field ground motions. Fragility curves corresponding to IO (Immediate Occupancy) and CP (Collapse Prevention) limit states are extracted based on IDA curves. Results imply that, frames designed based on the near field seismic design criteria of UBC-97 are more reliable under near field ground motions and their failure probability is less comparing to others.

Evaluation of seismic performance factors for steel DIAGRID structural system design

  • Lee, Dongkyu;Shin, Soomi;Ju, Youngkyu
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.735-755
    • /
    • 2016
  • This article presents a proposed analytical methodology to determine seismic force-resisting system R-values for steel diagrid framed systems. As current model building codes do not explicitly address the seismic design performance factors for this new and emerging structural system, the purpose of this study is to provide a sound and reliable basis for defining such seismic design parameters. An approach and methodology for the reliable determination of seismic performance factors for use in the design of steel diagrid framed structural systems is proposed. The recommended methodology is based on current state-of-the-art and state-of-the practice methods including structural nonlinear dynamic analysis techniques, testing data requirements, building code design procedures and earthquake ground motion characterization. In determining appropriate seismic performance factors (R, ${\Omega}_O$, $C_d$) for new archetypical building structural systems, the methodology defines acceptably low values of probability against collapse under maximum considered earthquake ground shaking.

전력계통 안정성확보를 위한 확률적 예약요금제 (Probabilistic Precontract Pricing for Power System Security)

  • 임성황;최준영;박종근
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.197-205
    • /
    • 1994
  • Security of a power system refers to its robustness relative to a set of imminent disturbances (contingencies) during operation. The socially optimal solution for the actuall level of generation/consumption has been well-known spot pricing at shot-run marginal cost. The main disadvantage of this approach arises because serious contingencies occur quite infrequently. Thus by establishing contractual obligations for contingency offering before an actual operation time through decision feedback we can obtain socially optimal level of system security. Under probabilistic precontract pricing the operating point is established at equal incremental cost of the expected short-run and collapse cost of each participant. Rates for power generation/consumption and for an offer to use during a contingency, as well as information on the probability distribution of contingency need for each participant, are derived so that individual optimization will lead to the socially optimal solution in which system security is optimized and the aggregate benefit is maxmized.

  • PDF

파손평가선도를 이용한 압력관 결함의 확률론적 건전성 평가 (Application of FAD on Pressure Tube for the Probabilitic Integrity Assessment)

  • 곽상록;왕종배;박윤원;이준성
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.289-295
    • /
    • 2004
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at uninspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of uninspected pressure tube. All the current integrity evaluations procedures are based on conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. More realistic failure criteria, based on FAD are also proposed for the probabilistic analysis. As a result of this study failure probabilities for various conditions are calculated, and examined application of FAD and LBB concept.

압력관의 확률론적평가에 타당한 파손평가선도 작성에 관한 연구 (A Study on FAD Development for Probabilistic Pressure Tube Integrity Assessment)

  • 곽상록;왕종배;최영환;박윤원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1211-1215
    • /
    • 2003
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at un-inspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of un-inspected pressure tube. But all the current integrity evaluations procedures are based on conventional deterministic approaches. So many integrity evaluation parameters are not directly apply to probabilistic analysis. As a result of this study failure assessment diagram are proposed based on test data.

  • PDF

Entropy-based optimal sensor networks for structural health monitoring of a cable-stayed bridge

  • Azarbayejani, M.;El-Osery, A.I.;Taha, M.M. Reda
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.369-379
    • /
    • 2009
  • The sudden collapse of Interstate 35 Bridge in Minneapolis gave a wake-up call to US municipalities to re-evaluate aging bridges. In this situation, structural health monitoring (SHM) technology can provide the essential help needed for monitoring and maintaining the nation's infrastructure. Monitoring long span bridges such as cable-stayed bridges effectively requires the use of a large number of sensors. In this article, we introduce a probabilistic approach to identify optimal locations of sensors to enhance damage detection. Probability distribution functions are established using an artificial neural network trained using a priori knowledge of damage locations. The optimal number of sensors is identified using multi-objective optimization that simultaneously considers information entropy and sensor cost-objective functions. Luling Bridge, a cable-stayed bridge over the Mississippi River, is selected as a case study to demonstrate the efficiency of the proposed approach.

선체 중앙 횡단면의 시스템 신뢰성해석 (System Reliability Analysis of Midship Sections)

  • 양영순;서용석
    • 대한조선학회논문집
    • /
    • 제30권1호
    • /
    • pp.115-124
    • /
    • 1993
  • 본 연구에서는 구조물의 안전성을 평가하는 방법으로써 구조시스템 신뢰성 해석방법을 살펴보고 소성설계 관점에서 선체중앙단면의 안전성을 평가하고자 한다 이를 위해 소성붕괴모드는 가상하중법과 하중증분법을 이용한 탄소성 구조해석법으로 구하고, 확률론적으로 중요한 붕괴모드는 branch and bound 방법을 변형하여 소성붕괴모드를 형성하는 마지막 소성힌지단계에서 branching하는 방법을 적용하여 붕괴모드가 반복 생산되는 문제를 개선하였다. 이렇게 구한 붕괴모드를 이용하여 1,2차 bound방법으로 선체횡단면의 시스템 신뢰도 및 시스템 파괴확률을 구하고 본 연구에서 제시한 방법의 유효성을 붕괴하중 계수방법과 비교 검토하였다.

  • PDF