• Title/Summary/Keyword: Collapse Probability

Search Result 145, Processing Time 0.024 seconds

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

Seismic Fragility Evaluation of Chimney Structure in Power Plant by Finite Element Analysis (유한요소 해석을 통한 발전소 연돌 구조물의 지진취약도 분석)

  • Kwon, Gyu-Bin;Kim, Jin-Sup;Kwon, Min-Ho;Park, Kwan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.276-284
    • /
    • 2019
  • Seismic research on bridges, dams and nuclear power plants, which are infrastructure in Korea, has been carried out since early on, but in the case of structures in thermal power plants, research is insufficient. In this study, a total of 192 dynamic analyzes were performed for 16 actual seismic waves and 12 PGAs. As a result, the probability of failure increased as the PGA value increased for each applied seismic wave, but it was different for each seismic wave. As a result, at 0.22G, the ratio of the compressive limit reached to the limit state was 25% and the ratio of the relative displacement reached the limit state was 13%. So, the probability of collapse due to compressive failure Is higher. Therefore, the fragility curve of the chimney which is the subject of this study can be used as a quantitative basis to determine the limit state of the target structure when an earthquake occurs and to be used for the safety design of the thermal power plants.

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

Structural reliability index versus behavior factor in RC frames with equal lateral resistance

  • Mohammadi, R.;Massumi, A.;Meshkat-Dini, A.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.995-1016
    • /
    • 2015
  • The reliability or the safety index is a measure of how far a structure is from the state of collapse. Also it defined as the probability that a structure will not fail in its lifetime. Having any increase in the reliability index is typically interpreted as increasing in the safety of structures. On the other hand most of researchers acknowledged that one of the most effective means of increasing both the reliability and the safety of structures is to increase the structural redundancy. They also acknowledged that increasing the number of vertical seismic framing will make structural system more reliable and safer against stochastic events such as earthquakes. In this paper the reliability index and the behavior factor of a numbers of three dimensional RC moment resisting frames with the same story area, equal lateral resistant as well as different redundancy has been evaluated numerically using both deterministic and probabilistic approaches. Study on the reliability index and the behavior factor in the case study models of this research illustrated that the changes of these two factors do not have always the same manner due to the increasing of the structural redundancy. In some cases, structures with larger reliability index have smaller behavior factor. Also assuming the same ultimate lateral resistance of structures which causes an increase to a certain level of redundancy can enhance behavior factor of structures. However any further increase in the redundancy of that certain level might decrease the behavior factor. Furthermore, the results of this study illustrate that concerning any increase in the structural redundancy will make the reliability index of structure to be larger.

Seismic design of chevron braces cupled with MRF fail safe systems

  • Longo, Alessandra;Montuori, Rosario;Piluso, Vincenzo
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this paper, the Theory of Plastic Mechanism Control (TPMC) is applied to the seismic design of dual systems composed by moment-resisting frames and Chevron braced frames. The application of TPMC is aimed at the design of dual systems able to guarantee, under seismic horizontal forces, the development of a collapse mechanism of global type. This design goal is of primary importance in seismic design of structures, because partial failure modes and soft-storey mechanisms have to be absolutely prevented due to the worsening of the energy dissipation capacity of structures and the resulting increase of the probability of failure during severe ground motions. With reference to the examined structural typology, diagonal and beam sections are assumed to be known quantities, because they are, respectively, designed to withstand the whole seismic actions and to withstand vertical loads and the net downward force resulting from the unbalanced axial forces acting in the diagonals. Conversely column sections are designed to assure the yielding of all the beam ends of moment-frames and the yielding and the buckling of tensile and compressed diagonals of the V-Braced part, respectively. In this work, a detailed designed example dealing with the application of TPMC to moment frame-chevron brace dual systems is provided with reference to an eight storey scheme and the design procedure is validated by means of non-linear static analyses aimed to check the actual pattern of yielding. The results of push-over analyses are compared with those obtained for the dual system designed according to Eurocode 8 provisions.

A Study on the Connection Method for the Collapse Damage of Electric Power Facilities due to Earthquake Effects (지진 영향으로 인한 전기시설물의 붕괴피해 연계 방안 연구)

  • Lee, Byung-Hoon;Lee, Byung-Jin;Oh, Seung-Hee;Jung, Woo-Sug;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.203-208
    • /
    • 2018
  • In this paper, we selected power and power distribution facilities corresponding to urban infrastructure from the types of damage that could be caused by earthquakes and studied how they were calculated to damage. To calculate the damage, a graph of the magnitude of the damage was produced by applying the vulnerability curve calculation formula, which can be calculated for each type and type of facility. The scale of the earthquake and the probability of the occurrence of damage by the maximum earthquake acceleration were shown in the form of a vulnerability rate when the earthquake occurred in the urban infrastructure facility for utilizing the calculation result. It also applied a method of quantifying the fragility, which is a method of converting the calculated fragility into an integrated form, to represent a constant value for the magnitude of the damage. Continuing research, such as the method applied in this paper, could help identify in advance the types of structures affected by an earthquake and respond to reducing damage.

An Evaluation of Landslide Probability by Maximum Continuous Rainfall in Gangwon, Korea (강원지역의 최대연속강우량에 의한 산사태 발생가능성 평가)

  • Yang, In-Tae;Park, Jae-Kook;Jeon, Woo-Hyun;Chun, Ki-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2007
  • Most natural disasters in Korea are caused by meteorological natural phenomena, which include storms, heavy rains, heavy snow, hail, tidal waves, and earthquakes. Rainfall is the most frequent cause of disasters and accounts for about 80% of all disasters. Particularly in recent years, Korea has seen annual occurrences of natural disasters associated with landslides (slope and retaining wall collapse and burying) due to meteorological causes from the increasing intensity of heavy rains including local heavy rainfalls. In Korea, it is critical to analyze the characteristics of landslides according to rainfall characteristics and to take necessary and proper measures for them. This study assessed the possibility of landslides in the Gangwon region with a geographic information system by taking into account the inducer factors of landslides and the maximum continuous rainfall of each area. It also analyzed areas susceptible to landslides and checked the distribution of landslide-prone areas by considering the rainfall characteristics of those areas.

  • PDF

Study on Seismic Fragility Analysis of Water Supply Facilities (상수도 시설물의 지진 취약도)

  • Lee, Changsoo;Shin, Deasub;Lee, Hodam
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • In this study, The failure of water supply facilities is categorized into two phases: functional failure and complete collapse. The fragility curve of water supply facilities under PGA has been developed for two loading cases: actual overseas earthquake and Korean artificial earthquake. The seismic fragility of water supply facilities has been analyzed and compared about failure phases and PGA. From the analysis results, the probability of failure of the wrapped steel pipe and ductile case iron pipe under Korean artificial earthquake has been shown as lower than that under actual overseas earthquake in the range from 0.1 to 0.4. The suggested seismic fragility curve by using Korean artificial earthquake can be exploited in a reasonable seismic design reflecting Korean local ground condition.

Development of PBD Method for Concrete Mix Proportion Design Using Bayesian Probabilistic Method (Bayesian 통계법을 활용한 성능기반형 콘크리트 배합설계방법 개발)

  • Kim, Jang-Ho Jay;Phan, Duc-Hung;Lee, Keun-Sung;Yi, Na-Hyun;Kim, Sung-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • Recently, Performance Based Design (PBD) method has been studied as a next generation structural design method, which enables a designed structure to satisfy the required performance during its service life. One method of deciding whether the required performance has been satisfied is Bayesian method, which has been commonly used in seismic analysis. Generally, it is presented as a conditional probability of exceeding some limit state (i.e., collapse) for a given ground motion. In PBD of concrete mixture design, the same methodology can be applied to assess concrete material performance based on some conditional parameters (i.e. strength, workability, carbonation, etc). In this paper, a detailed explanation of the procedure of drawing satisfaction curve by using Bayesian method based on various material parameters is shown. Also, a discussion of using the developed satisfaction curves for PBD for concrete mixture design is presented.

Assessment of Earthquake Disaster Risk in Seoul Metropolitan Area (서울지역 지진 재해 위험도 평가)

  • Lee, Chang-Soo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.71-78
    • /
    • 2005
  • The principal basic concepts of aseismic design minimize damage of human-life and have little probability during life of structures. For detailed understanding of the design, the best reasonable countermeasure can be possible equally the smallest damage of human-life and economic loss. As a result, it can be achieved by notion of not structure-centered but city-centered, the notion is actualized by development of a macro-level evaluation. A seismic damage between city and country is different. And the larger the city then, the greater the loss by rather collateral hazards than collapse of structures. Hence, the macro-evaluation of an earthquake disaster is suitable for an old city where is center of political and economic activity, and is concentration of population and infrastructure. This study aims to develop comprehensive earthquake desaster risk index, and assesses relative earthquake risk of six zones in Seoul metropolitan area.