• Title/Summary/Keyword: Collapse Absorption Energy

Search Result 84, Processing Time 0.028 seconds

A Study on the Bending Collapse at the Open Cross-Section Members with Experiment and Analysis (열린 단면 부재의 굽힘 붕괴 실험 및 해석에 관한 연구)

  • 이승철;강신유
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.132-139
    • /
    • 2004
  • The open section members have been used as the members of vehicle such as automotives, airplanes and trains. When vehicles are crashed, these members have absorption of the energy and it is necessary for retainment of the survival space, and as the result, the prediction for the displacement of members in this case of the crash of vehicles is very important. The displacements of members in this case of the crash of automotives show combined aspect of both axial collapse and bending collapse. In the rollover accident when bending collapse happen, the collapse of each members is progressed by the plastic hinge which made from bending moment, and therefore the research for the behavior of members under bending moment after collapse is necessary to determine the internal energy which the members can absorb and the deformed shapes of the members on the step of design. In this paper, the characteristics of bending collapse at the members of the open cross-section were studied with experiment and numerical analysis. We made a comparative studied of the result of the experiment, and changed the axis according to the parallel-axis theorem.

An Experimental Study on the Impact Energy Absorption Mechanism of CFRP/Al Compound Square Tube (CFRP/Al 혼성 사각부재의 충격에너지 흡수 메카니즘의 실험적 고찰)

  • Hwang, Woo Chae;Cha, Cheon Seok;Yang, Yong Jun;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.12-17
    • /
    • 2015
  • In this study, the collapse characteristic of CFRP/Al compound square tube was investigated experimentally. The conclusions are as follows; The impact collapse characteristic of CFRP/Al compound square tube was found to be the most superior stacking conditions $[90^{\circ}]_8$. It showed that a very stable collapse mode was crushing. In the member with $[0_2{^{\circ}}/90_2{^{\circ}}]_s$ and $[90_2{^{\circ}}/0_2{^{\circ}}]_s$, stacking conditions, $0^{\circ}$ fibers were splayed to the external by laminar bending, while the $90^{\circ}$ fibers were held between the folds of the aluminum member by laminar bending, local buckling and transverse crack. In the member with $[45_2{^{\circ}}/45_2{^{\circ}}]_s$ stacking conditions, fibers were held between the folds of the aluminum member by local buckling and transverse crack.

A Study on the Energy Absorption Characteristics and Fracture Mode of CFRP Laminate Members under Axial Compression (축압축을 받는 CFRP 적층부재의 에너지흡수특성과 파괴모드에 관한 연구)

  • 김정호;정회범;전형주
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.7-12
    • /
    • 2002
  • The object of this paper is to investigate collapse characteristics of CF/Epoxy(Carbon Fiber/Epoxy resin) composite tubes on the change of interlaminar number and fiber orientation angle of outer and to evaluate reappearance of collapse characteristics on the change of tension strength of fibers under static and impact axial compression loads. When a CF/Epoxy composite tube is mushed, static/impact energy is consumed by friction between the loading plate and the splayed fiends of the tube, by fracture of the fibers, matrix and their interface. In general, CF/Epoxy tube with 6 interlaminar number(C-type) absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CF/Epoxy tubes and loading status(static/impact). Typical collapse modes of CF/Epoxy tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shorn in case of CF/Epoxy tubes with 0$^{\circ}$ orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CF/Epoxy tubes with 90$^{\circ}$ orientation angie or outer under static loadings, however in impact tests those were collapsed in fragmentation mode. So that CF/Epoxy tube with 6 interlaminar number and 90$^{\circ}$ outer orientation angle presented to the optimal collapse characteristics.

Crashworthiness Design Concepts for the Improved Energy Absorbing Performance of an Aluminum Lightweight Vehicle Body (알루미늄 경량 차체의 충돌에너지 흡수 성능 향상을 위한 설계 개선 연구)

  • 김범진;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • For the weight reduction of vehicle body up to 20∼30% compared to the conventional monocoque steel body·.in-white, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using an aluminum space frame. In this paper, the crush tests and simulations for the aluminum extrusions filled with the structural from are performed to evaluate the collapse characteristics of that light weighted material. From these studies. the effectiveness of structural for is evaluated in improving automotive crashworthiness. In order to improve the improve energy absorption capability of the aluminum space frame body, safety design modifications are performed and analyzed based on the suggested collapse initiator concepts and on the application of the aluminum extrusions filled with structural foam. The effectiveness of these design concepts on the frontal and side impact characteristics of the aluminum intensive vehicle structure is investigated and summarized.

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF

Collapse Characteristics of CFRP Hat Member with Outer Laminated Angle Changes under Hygrothermal Environment with Temperature Changes (다양한 열습환경하에서 최외각층 변화에 따른 CFRP 모자형 부재의 압궤특성)

  • Yang, Yongjun;Hwang, Woochae;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.243-249
    • /
    • 2014
  • Currently, CFRP composites are rapidly replacing steel plates, as they are lighter, stronger, and more elastic; however, they are poorly suited to hygrothermal and impact-collapsed environments because moisture can alter their molecule arrangement and chemical properties. In this study, environments are experimentally simulated in order to investigate changes in the moisture absorption inside a CFRP composite and to determine its weakest point. Moreover, changes in the moisture absorption ratio at temperatures of $60^{\circ}C$ and $80^{\circ}C$ are studied and compared in order to understand how changes in temperature affect moisture absorption inside CFRP composites. Results show that moisture absorption leads to a strength reduction of around 50%. In addition, the moisture absorption rate inside CFRP composites is shown to change rapidly with increasing temperature. Accordingly, it showed that the change in matrix also has a weak point.

A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II))

  • 차천석;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

The energy absorption characteristics of thin-walled members for the use of light-weight vehicles (경량화용 차체구조 박육부재의 에너지 흡수특성)

  • 김정호;윤규종;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.33-43
    • /
    • 1996
  • In this paper, collapse test of thin-walled structures, which are widely used in the vehicle members is carried out to observe the dependence of cross-sectional forms and materials on the absorbed energy in the viewpoint of crashworthiness. Also, specimens consist of two kinds (Al, CFRP) with various thickness. Comparisons of circular specimens are made to find characteristics of the different specimens on the absorption ability according to specimen thickness and materials.

  • PDF

Development of Vehicle Members with Spot Welded Thin-wall Section for Optimum Impart Characteristic -Based on Collapse Characteristics on the Varied Impact Velocities- (최적 충격특성에 갖는 차체구조용 점용접 박육단면부재의 개발 -충격속도변화에 따른 압궤특성을 중심으로-)

  • Yang, In-Yeong;Cha, Cheon-Seok;Gang, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1131-1138
    • /
    • 2001
  • This paper concerns the crashworthiness of the widely used vehicle structure, the spot welded hat and double hat shaped section members, which are excellent on the point of the energy absorbing capacity and low production cost. The target of this paper is to analyze the energy absorption capacity of the structure against the front-end collision, and to obtain useful information for designing stage. Changing the spot weld pitches on the flanges, the hat and double hat shaped section members were tested on the axial collapse loads in impact velocities of 4.72m/sec, 6.54m/sec, 7.19m/sec and 7.27m/sec. To efficiently review the collapse characteristics of these sections, the simulation have been carried out using explicit FEM package, LS-DYNA3D. The solutions are compared with results from the impact collapse experiments.

Quantum Jump Approach to Stimulated Absorption and Emission

  • Lee, Chang Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1186-1188
    • /
    • 2006
  • In this paper a new theory is presented to treat the problem of stimulated absorption and emission of photons between energy levels from the standpoint of discrete quantum jumps. In order to implement the theory a scheme to avoid the quantum Zeno effect is proposed. Numerical simulations are performed to demonstrate that this approach does not contradict the principles of the standard wave mechanics. It is shown that with this approach one can obtain photon observation statistics as well.