• Title/Summary/Keyword: Collagen matrix

Search Result 585, Processing Time 0.023 seconds

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

Yam (Dioscorea batatas) Root and Bark Extracts Stimulate Osteoblast Mineralization by Increasing Ca and P Accumulation and Alkaline Phosphatase Activity

  • Kim, Suji;Shin, Mee-Young;Son, Kun-Ho;Sohn, Ho-Yong;Lim, Jae-Hwan;Lee, Jong-Hwa;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.194-203
    • /
    • 2014
  • Yam (Dioscorea batatas) is widely consumed as functional food for health promotion mainly in East Asia countries. We assessed whether yam root (tuber) or bark (peel) extracts stimulated the activity of osteoblasts for osteogenesis. MC3T3-E1 cells (mouse osteoblasts) were treated with yam root extracts (water or methanol) (study I) or bark extracts (water or hexane) (study II) within $0{\sim}10{\mu}g/mL$ during the periods of osteoblast proliferation (5~10 day), matrix maturation (11~15 day) and mineralization (16~20 day) as appropriate. In study I, both yam root water and methanol extracts increased cell proliferation as concentration-dependent manner. Cellular collagen synthesis and alkaline phosphatase (ALP) activity, both the indicators of bone matrix protein and inorganic phosphate production for calcification respectively, were also increased by yam root water and methanol extract. Osteoblast calcification as cell matrix Ca and P accumulation was also increased by the addition of yam root extracts. In study II, yam bark extracts (water and hexane) increased osteoblast proliferation and differentiation, as collagen synthesis and ALP activity and osteoblast matrix Ca and P deposition. The study results suggested that both yam root and bark extracts stimulate osteogenic function in osteoblasts by stimulating bone matrix maturation by increasing collagen synthesis, ALP activity, and matrix mineralization.

Effects of matrix metallproteinases on dentin bonding and strategies to increase durability of dentin adhesion (상아질 접착에 대한 matrix metalloproteinase (MMP)의 영향과 이를 극복하기 위한 전략)

  • Lee, Jung-Hyun;Chang, Ju-Hea;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • The limited durability of resin-dentin bonds severely compromises the longevity of composite resin restorations. Resin-dentin bond degradation might occur via degradation of water-rich and resin sparse collagen matrices by host-derived matrix metalloproteinases (MMPs). This review article provides overview of current knowledge of the role of MMPs in dentin matrix degradation and four experimental strategies for extending the longevity of resin-dentin bonds. They include: (1) the use of broadspectrum inhibitors of MMPs, (2) the use of cross-linking agents for silencing the activities of MMPs, (3) ethanol wet-bonding with hydrophobic resin, (4) biomimetic remineralization of water-filled collagen matrix. A combination of these strategies will be able to overcome the limitations in resin-dentin adhesion.

Processed Panax ginseng, Sun Ginseng Increases Type I Collagen by Regulating MMP-1 and TIMP-1 Expression in Human Dermal Fibroblasts

  • Song, Kyu-Choon;Chang, Tong-Shin;Lee, Hye-Jin;Kim, Jin-Hee;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • In the present study, effects of sun ginseng (SG) on the collagen synthesis and the proliferation of dermal fibroblast were investigated. Collagen synthesis was measured by assaying procollagen type I C-peptide production. In addition, the level of matrix metalloproteinase (MMP)-1 was assessed by western blot analysis. SG suppressed the MMP-1 protein level in a dose-dependent manner. In contrast, SG dose-dependently increased tissue inhibitors of MMP (TIMP)-1 production in fibroblasts. SG increased type I collagen production directly and/or indirectly by reducing MMP-1 and stimulating TIMP-1 production in human dermal fibroblasts. SG dose-dependently induced fibroblast proliferation and this, in turn, can trigger more collagen production. These results suggest that SG may be a potential pharmacological agent with anti-aging properties in cultured human skin fibroblast.

Experimental Assessment of the Histologic Changes of Collagen Matrix(Terudermis®) in Subcutaneous Implantation: Comparison with Autologous Dermal Graft (콜라젠 기질(Terudermis®)의 피하이식 후 조직학적 변화: 자가 진피 이식과의 비교)

  • Kim, Boo Yeong;Kang, So Ra;Lee, Ji Hyuck;Burm, Jin Sik;Kim, Yang Woo;Lee, Min Jin;Kang, Won Kyung
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.592-600
    • /
    • 2006
  • Purpose: Numerous materials, both autologous and nonautologous, have been used for augmentation of sunken areas, but they have their own limitations. The purpose of this study is to determine the histologic response and volume change of the xenogenic collagen-based scaffold($Terudermis^{(R)}$) to the transfer into a subcutaneous soft tissue location in vivo rabbit model. Methods: Eighteen New Zealand white rabbits were used. Three $1.2{\times}1.2cm$ sized subcutaneous pockets were created on the dorsal surface of each ear. $1{\times}1cm$ sized collagen matrix($Terudermis^{(R)}$) and autologous dermal graft were implanted into each pocket. Full thickness of ear was harvested in 3 days, 1, 2, 4 weeks, 3, 6 months after implantation. Results: Histological analysis of implants demonstrated progressive neovascularization, fibroblast infilteration, neocollagen bundle synthesis and organization, and few foreign body reaction. The thickness of the collagen matrix in 3 days after the operation was 87.69% of the thickness of the collagen matrix in wet state. Then it decreased to 30.17% in 6 months after the operation. The rate of decrease was similar at all points at the same time compared with autologous dermal graft. Conclusion: Our experimental study suggests that $Terudermis^{(R)}$ could be a safe material as an implant for permanent augmentation in subcutaneous tissue. However the choice of graft for augmentation should be remained to the clinical situations.

The Study on the Effectiveness and Mechanism of Several Herbal Medicines for Development of Osteoarthritis Treatment (퇴행성관절염(退行性關節炎) 치료제 개발을 위한 수종의 한약재활성 검색 및 기전연구)

  • Huh Jeong-Eun;Cho Eun-Mi;Yang Ha-Ru;Kim Dae-Sung;Baek Yong-Hyeon;Lee Jae-Dong;Choi Do-Young;Park Dong-Suk
    • The Journal of Korean Medicine
    • /
    • v.27 no.1 s.65
    • /
    • pp.229-239
    • /
    • 2006
  • Objectives : Articular cartilage is a potential target for drugs designed to inhibit the activity of matrix metalloproteinases (MMPs) to stop or slow the destruction of the proteoglycan and collagen in the cartilage extracelluar matrix. The purpose of this study was to investigate the effects of KHBJs for cartilage-protective effect in human and rabbit articular cartilage explants. Methods : The cartilage-protective effects of KHBJ were evaluated by using glycosaminoglycan degradation assay, collagen degradation assay, colorimetric analysis of MMPs activity, and histological analysis in rabbit and human cartilage explants culture. Results : KHBJs significantly inhibited GAG and collagen release of rabbit and human cartilage explant in a concentration-dependent manner. Also, KHBJs inhibited MMP-3 and MMP-13 activities from IL-$1{\alpha}$-treated cartilage explants cultures. Histological analysis indicated that KHBJ004 reduced the degradation of the cartilage matrix compared with that of IL-$1{\alpha}$-treated cartilage explants. KHBJ004 had no harmful effect on chondrocytes viability or cartilage morphology in cartilage explants. Conclusions : These results indicate that KHBJs inhibits the degradation of proteoglycan and collagen through the downregulation of MMP-3 and MMP-13 activities without affecting the viability or morphology of IL-$1{\alpha}$-stimulated rabbit and human articular cartilage explants.

  • PDF

Toxicological Evaluation of Chitosan Cross-linked Collagen-GAG Matrix (CCGM) In vitro and In vivo (Chitosan Cross-linked Collagen-GAG Matrix(CCGM)의 독성학적 고찰)

  • Lee, Hae-Yul;Kim, Dong-Hwan;Cho, Hyun;Ahn, Byoung-Ok;Kang, Soo-Hyung;Kim, Won-Bae
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • Chitosan cross-linked collagen-glycosaminoglyan (CCGM) is an artificial skin substitute made to form a sponge like dimensional matrix. It can be used to facilitate reconstruction of dermal tissue when applied on large wounds such as severe burns. In order to study the toxicological effects of CCGM the cytotoxicity, local irritation and skin sensitization test were carried out according to the standards of ISO 10993. In the cytotoxicity test utilizing LDH and MTT test, both the CCGM and its extract had no toxicity of Balb/c 3T3 cells. The local irritatioin test on rabbit skin demonstrated that CCGM did not promote any harmful when directly applied on skin. In addition, it did not elicit any allergic reaction in the guinea pig maximization test. Based on these results, it is suggested that CCGM is a material without cytotoxicity, local irritation and allergenicity.

  • PDF

Monocyte Attachment and Migration through Collagen IV in Diabetes Mellitus

  • Kostidou, Elena;Koliakos, George;Paletas, Konstantinos;Kaloyianni, Martha
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.452-456
    • /
    • 2008
  • The interactions between monocytes and extracellular matrix proteins have been implicated in atherosclerosis pathophysiology. In the present study we evaluated monocyte attachment and migration through oxidized and non-oxidized collagen IV. Monocyte attachment was tested on microwells coated with either native or oxidized collagen IV. Monocyte migration through collagen IV was examined on transwells. Monocytes derived from patients with diabetes mellitus showed an increased ability to attach and migrate through collagen IV as compared to those derived from healthy volunteers. Moreover, control monocytes attached to oxidized collagen at a higher degree, while they migrated through oxidized collagen at a lower degree, as compared to the native protein. Our results also showed the involvement of the alpha2 integrin subunit in the above phenomena suggesting a modified interaction between monocytes and collagen IV in diabetes mellitus.

Anti-wrinkle Activities Verification of Buplerum falcatum Extracts on CCD-986sk (CCD-986sk세포내 시호 추출물의 항주름 활성 검증)

  • Kim, Dong-Hee;Park, Tae-Soon;Son, Jun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.183-187
    • /
    • 2015
  • The electron donating ability, elastase inhibitory, procollagen synthesis and Matrix metalloprotease-1 (MMP-1) activities were measured in order to verify the anti-wrinkle properties of extracts from Buplerum falcatum as a functional ingredient for cosmetic products. Electron donating ability and elastase inhibition activities were 80 and 52% at a dose of $1,000{\mu}g/mL$ of B. falcatum 70% ethanol extract. Pro-collagen synthesis was increased with the increase concentration of B. falcatum extract on CCD-986sk in addition to decrease the amount of protein of MMP-1. The results suggested that B. falcatum extract can be used to reduced electron donating ability, elastase, pro-collagen synthesis and MMP-1 activity and is a potential candidate for cosmedical materials.

Effect of herbal extracts on bone regeneration in a rat calvaria defect model and screening system

  • Lee, Dong-Hwan;Kim, Il-Kyu;Cho, Hyun-Young;Seo, Ji-Hoon;Jang, Jun-Min;Kim, Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • Objectives: The aim of this study was to evaluate the effects of herbal extracts on bone regeneration. Two known samples were screened. Materials and Methods: We previously established a rat calvaria defect model using a combination of collagen scaffold and herbal extracts. An 8 mm diameter trephine bur with a low-speed dental hand piece was used to create a circular calvaria defect. The experimental group was divided into 4 classifications: control, collagen matrix, Danshen with collagen, and Ge Gan with collagen. Animals in each group were sacrificed at 4, 6, 8, and 10 weeks after surgery, and bone regeneration ability was evaluated by histological examination. Results: Results revealed that both Danshen and Ge Gan extracts increased bone formation activity when used with collagen matrix. All groups showed almost the same histological findings until 6 weeks. However, after 6 weeks, bone formation activity proceeded differently in each group. In the experimental groups, new bone formation activity was found continuously up to 10 weeks. In the Danshen and Ge Gan groups, grafted materials were still present until 10 weeks after treatment, as evidenced by foreign body reactions showing multinucleated giant cells in chronic inflammatory vascular connective tissue. Conclusion: Histological analyses showed that Danshen and Ge Gan extractions increased bone formation activity when used in conjunction with collagen matrix.