• Title/Summary/Keyword: Collaborative and Content Based Filtering

Search Result 96, Processing Time 0.027 seconds

Implementation of Personalized Music Recommendation System using Time-weighting in Mobile Environment (모바일 환경에서 시간에 따른 가중치 부여를 이용한 개인화된 음악 추천 서비스)

  • Park, Won Ik;Kang, Sang Kil
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.2
    • /
    • pp.251-261
    • /
    • 2013
  • The appearance of various mobile Internet environment access to existing networks of mobile devices is easier to tell. In addition, mobile device users to use the wireless environment than a wired environment, user profile information is readily available features. Mobile devices have features that use alone. These characteristics of mobile devices to apply the personalization service is the best system. This paper proposes for mobile device users a personalized mobile music content recommendation service. This service propose to utilizes the user's access history information using time-weighting and collaborative filtering. Access history information can find out information of user interest. Using this information, consider the preference of music genre and time-weighted based on the recommendations makes the music. This method the problem of the traditional music recommendation system, point user's favorite music genre is changing over time do not consider that to solve the problem.

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.

An Analysis of Customer Preferences of Recommendation Techniques and Influencing Factors: A Comparative Study of Electronic Goods and Apparel Products (추천기법별 고객 선호도 및 영향요인에 대한 분석: 전자제품과 의류군에 대한 비교연구)

  • Park, Yoon-Joo
    • Information Systems Review
    • /
    • v.18 no.2
    • /
    • pp.59-77
    • /
    • 2016
  • Although various recommendation techniques have been applied to the e-commerce market, few studies compare the intent to use these techniques from the customer's perspective. In this paper, we conduct a comparative analysis of customers' intention to use five recommendation techniques widely adapted by online shopping malls and focus on the differences in purchasing electronic goods and apparel products. The recommendation techniques are as follows: best-seller recommendation, merchandiser recommendation, content-based recommendation, collaborative filtering recommendation, and social recommendation. Additionally, we examine which factors influence customer intent to use the recommendation services. Data were collected through a survey administered to 220 e-commerce users with prior experience with recommendation services. Collected data were examined using analysis of variance and regression analysis. Results indicate statistically significant differences in customers' intention to use recommendation services according to the recommendation technique. In particular, the best-seller recommendation technique is preferred when purchasing electronic goods, whereas the content-based recommendation technique is preferred for apparel purchases. Factors such as personal characteristics and personality, purchasing tendency, as well as perception of the product or recommendation service affect a customer's intention to use a recommendation service. However, the influence of these factors varies depending on the recommendation technique. This study provides guidelines for companies to adopt appropriate recommendation techniques according to product categories and personal characteristics of customers.

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.

A New Item Recommendation Procedure Using Preference Boundary

  • Kim, Hyea-Kyeong;Jang, Moon-Kyoung;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.81-99
    • /
    • 2010
  • Lately, in consumers' markets the number of new items is rapidly increasing at an overwhelming rate while consumers have limited access to information about those new products in making a sensible, well-informed purchase. Therefore, item providers and customers need a system which recommends right items to right customers. Also, whenever new items are released, for instance, the recommender system specializing in new items can help item providers locate and identify potential customers. Currently, new items are being added to an existing system without being specially noted to consumers, making it difficult for consumers to identify and evaluate new products introduced in the markets. Most of previous approaches for recommender systems have to rely on the usage history of customers. For new items, this content-based (CB) approach is simply not available for the system to recommend those new items to potential consumers. Although collaborative filtering (CF) approach is not directly applicable to solve the new item problem, it would be a good idea to use the basic principle of CF which identifies similar customers, i,e. neighbors, and recommend items to those customers who have liked the similar items in the past. This research aims to suggest a hybrid recommendation procedure based on the preference boundary of target customer. We suggest the hybrid recommendation procedure using the preference boundary in the feature space for recommending new items only. The basic principle is that if a new item belongs within the preference boundary of a target customer, then it is evaluated to be preferred by the customer. Customers' preferences and characteristics of items including new items are represented in a feature space, and the scope or boundary of the target customer's preference is extended to those of neighbors'. The new item recommendation procedure consists of three steps. The first step is analyzing the profile of items, which are represented as k-dimensional feature values. The second step is to determine the representative point of the target customer's preference boundary, the centroid, based on a personal information set. To determine the centroid of preference boundary of a target customer, three algorithms are developed in this research: one is using the centroid of a target customer only (TC), the other is using centroid of a (dummy) big target customer that is composed of a target customer and his/her neighbors (BC), and another is using centroids of a target customer and his/her neighbors (NC). The third step is to determine the range of the preference boundary, the radius. The suggested algorithm Is using the average distance (AD) between the centroid and all purchased items. We test whether the CF-based approach to determine the centroid of the preference boundary improves the recommendation quality or not. For this purpose, we develop two hybrid algorithms, BC and NC, which use neighbors when deciding centroid of the preference boundary. To test the validity of hybrid algorithms, BC and NC, we developed CB-algorithm, TC, which uses target customers only. We measured effectiveness scores of suggested algorithms and compared them through a series of experiments with a set of real mobile image transaction data. We spilt the period between 1st June 2004 and 31st July and the period between 1st August and 31st August 2004 as a training set and a test set, respectively. The training set Is used to make the preference boundary, and the test set is used to evaluate the performance of the suggested hybrid recommendation procedure. The main aim of this research Is to compare the hybrid recommendation algorithm with the CB algorithm. To evaluate the performance of each algorithm, we compare the purchased new item list in test period with the recommended item list which is recommended by suggested algorithms. So we employ the evaluation metric to hit the ratio for evaluating our algorithms. The hit ratio is defined as the ratio of the hit set size to the recommended set size. The hit set size means the number of success of recommendations in our experiment, and the test set size means the number of purchased items during the test period. Experimental test result shows the hit ratio of BC and NC is bigger than that of TC. This means using neighbors Is more effective to recommend new items. That is hybrid algorithm using CF is more effective when recommending to consumers new items than the algorithm using only CB. The reason of the smaller hit ratio of BC than that of NC is that BC is defined as a dummy or virtual customer who purchased all items of target customers' and neighbors'. That is centroid of BC often shifts from that of TC, so it tends to reflect skewed characters of target customer. So the recommendation algorithm using NC shows the best hit ratio, because NC has sufficient information about target customers and their neighbors without damaging the information about the target customers.