• Title/Summary/Keyword: Collaborative Recommender Systems

Search Result 203, Processing Time 0.022 seconds

Blog Intelligence (블로그 인텔리전스)

  • Kim, Jae-Kyeong;Kim, Hyea-Kyeong;O, Hyouk
    • Journal of Information Technology Services
    • /
    • v.7 no.3
    • /
    • pp.71-85
    • /
    • 2008
  • The rapid growth of blog has caused information overload where bloggers in the virtual community space are no longer able to effectively choose the blogs they are exposed to. Recommender systems have been widely advocated as a way of coping with the problem of information overload in e-business environment. Collaborative Filtering (CF) is the most successful recommendation method to date and used in many of the recommender systems. In this research, we propose a CF-based recommender system for bloggers to find their similar bloggers or preferable virtual community without burdensome search effort. For such a purpose, we apply the "Interest Value" to CF recommender systems. The Interest Value is the quantity value about users' transaction data in virtual community, and can measure the opinion of users accurately. Based on the Interest Value, the neighborhood group is generated, and virtual community list is recommended using the Community Likeness Score (ClS). Our experimental results upon real data of Korean Blog site show that the methodology is capable of dealing with the information overload issue in virtual community space. And Interest Value is proved to have the potential to meet the challenge of recommendation methodologies in virtual community space.

Auxiliary Stacked Denoising Autoencoder based Collaborative Filtering Recommendation

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2310-2332
    • /
    • 2020
  • In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used methods and has significant effects in implementing the new recommendation function, but it also has limitations in dealing with the problem of poor scalability, cold start and data sparsity, etc. Combining the traditional recommendation algorithm with the deep learning model has brought great opportunity for the construction of a new recommender system. In this paper, we propose a novel collaborative recommendation model based on auxiliary stacked denoising autoencoder(ASDAE), the model learns effective the preferences of users from auxiliary information. Firstly, we integrate auxiliary information with rating information. Then, we design a stacked denoising autoencoder based collaborative recommendation model to learn the preferences of users from auxiliary information and rating information. Finally, we conduct comprehensive experiments on three real datasets to compare our proposed model with state-of-the-art methods. Experimental results demonstrate that our proposed model is superior to other recommendation methods.

Clustering-based Collaborative Filtering Using Genetic Algorithms (유전자 알고리즘을 이용한 클러스터링 기반 협력필터링)

  • Lee, Soojung
    • Journal of Creative Information Culture
    • /
    • v.4 no.3
    • /
    • pp.221-230
    • /
    • 2018
  • Collaborative filtering technique is a major method of recommender systems and has been successfully implemented and serviced in real commercial online systems. However, this technique has several inherent drawbacks, such as data sparsity, cold-start, and scalability problem. Clustering-based collaborative filtering has been studied in order to handle scalability problem. This study suggests a collaborative filtering system which utilizes genetic algorithms to improve shortcomings of K-means algorithm, one of the widely used clustering techniques. Moreover, different from the previous studies that have targeted for optimized clustering results, the proposed method targets the optimization of performance of the collaborative filtering system using the clustering results, which practically can enhance the system performance.

Using User Rating Patterns for Selecting Neighbors in Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.77-82
    • /
    • 2019
  • Collaborative filtering is a popular technique for recommender systems and used in many practical commercial systems. Its basic principle is select similar neighbors of a current user and from their past preference information on items the system makes recommendations for the current user. One of the major problems inherent in this type of system is data sparsity of ratings. This is mainly caused from the underlying similarity measures which produce neighbors based on the ratings records. This paper handles this problem and suggests a new similarity measure. The proposed method takes users rating patterns into account for computing similarity, without just relying on the commonly rated items as in previous measures. Performance experiments of various existing measures are conducted and their performance is compared in terms of major performance metrics. As a result, the proposed measure reveals better or comparable achievements in all the metrics considered.

Recommender System using Association Rule and Collaborative Filtering (연관 규칙과 협력적 여과 방식을 이용한 추천 시스템)

  • 이기현;고병진;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.91-103
    • /
    • 2002
  • A collaborative filtering which supports personalized services of users has been common use in existing web sites for increasing the satisfaction of users. A collaborative filtering is demanded that items are estimated more than specified number. Besides, it tends to ignore information of other users as recommending them on the basis of information of partial users who have similar inclination. However, there are valuable hidden information into other users' one. In this paper, we use Association Rule, which is common wide use in Data Mining, with collaborative filtering for the purpose of discovering those information. In addition, this paper proved that Association Rule applied to Recommender System has a effects to recommend users by the relation between groups. In other words, Association Rule based on the history of all users is derived from. and the efficiency of Recommender System is improved by using Association Rule with collaborative filtering.

  • PDF

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.

A Robust Collaborative Filtering against Manipulated Ratings (조작된 선호도에 강건한 협업적 여과 방법)

  • Kim, Heung-Nam;Ha, In-Ay;Jo, Geun-Sik
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.81-98
    • /
    • 2009
  • Collaborative filtering, one of the most successful technologies among recommender systems, is a system assisting users in easily finding the useful information and supporting the decision making. However, despite of its success and popularity, one notable issue is incredibility of recommendations by unreliable users called shilling attacks. To deal with this problem, in this paper, we analyze the type of shilling attacks and propose a unique method of building a model for protecting the recommender system against manipulated ratings. In addition, we present a method of applying the model to collaborative filtering which is highly robust and stable to shilling attacks.

  • PDF

Association Rule Mining and Collaborative Filtering-Based Recommendation for Improving University Graduate Attributes

  • Sheta, Osama E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.339-345
    • /
    • 2022
  • Outcome-based education (OBE) is a tried-and-true teaching technique based on a set of predetermined goals. Program Educational Objectives (PEOs), Program Outcomes (POs), and Course Outcomes (COs) are the components of OBE. At the end of each year, the Program Outcomes are evaluated, and faculty members can submit many recommended measures which dependent on the relationship between the program outcomes and its courses outcomes to improve the quality of program and hence the overall educational program. When a vast number of courses are considered, bad actions may be proposed, resulting in unwanted and incorrect decisions. In this paper, a recommender system, using collaborative filtering and association rules algorithms, is proposed for predicting the best relationship between the program outcomes and its courses in order to improve the attributes of the graduates. First, a parallel algorithm is used for Collaborative Filtering on Data Model, which is designed to increase the efficiency of processing big data. Then, a parallel similar learning outcomes discovery method based on matrix correlation is proposed by mining association rules. As a case study, the proposed recommender system is applied to the Computer Information Systems program, College of Computer Sciences and Information Technology, Al-Baha University, Saudi Arabia for helping Program Quality Administration improving the quality of program outcomes. The obtained results revealed that the suggested recommender system provides more actions for boosting Graduate Attributes quality.

Development of a Personalized Similarity Measure using Genetic Algorithms for Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.219-226
    • /
    • 2018
  • Collaborative filtering has been most popular approach to recommend items in online recommender systems. However, collaborative filtering is known to suffer from data sparsity problem. As a simple way to overcome this problem in literature, Jaccard index has been adopted to combine with the existing similarity measures. We analyze performance of such combination in various data environments. We also find optimal weights of factors in the combination using a genetic algorithm to formulate a similarity measure. Furthermore, optimal weights are searched for each user independently, in order to reflect each user's different rating behavior. Performance of the resulting personalized similarity measure is examined using two datasets with different data characteristics. It presents overall superiority to previous measures in terms of recommendation and prediction qualities regardless of the characteristics of the data environment.

Development of a Personalized Recommendation Procedure Based on Data Mining Techniques for Internet Shopping Malls (인터넷 쇼핑몰을 위한 데이터마이닝 기반 개인별 상품추천방법론의 개발)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.177-191
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is the most successful recommendation technology. Web usage mining and clustering analysis are widely used in the recommendation field. In this paper, we propose several hybrid collaborative filtering-based recommender procedures to address the effect of web usage mining and cluster analysis. Through the experiment with real e-commerce data, it is found that collaborative filtering using web log data can perform recommendation tasks effectively, but using cluster analysis can perform efficiently.

  • PDF