• Title/Summary/Keyword: Collaborative Recommender Systems

Search Result 203, Processing Time 0.022 seconds

Preprocessing Methods for Improving Prediction Accuracy in Recommender Systems (추천 시스템의 예측 정확도 향상을 위한 전처리 방법)

  • 박석인;김택헌;류영석;양성봉
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.247-249
    • /
    • 2002
  • 협력적 여과(collaborative filtering) 방법을 사용하는 추천 시스템에서 예측 정확도를 높이는 방법들 중 하나는 군집화(clustering)방법이 있다. 군집화 방법은 선호도가 유사한 사용자들을 미리 같은 군집으로 만들고, 군집 내에 속한 사용자들을 이웃으로 선정하여 예측을 수행하기 때문에 군집화의 결과가 예측의 정확도에 직접적인 영향을 주게 된다. 본 연구에서는 군집화 결과의 향상을 위해 데이터를 전 처리하는 두 가지 방법과 군집화의 특성을 이용한 새로운 예측식을 제안하고, 기존 연구 방법과의 비교 실험을 통해 실험결과를 분석한다.

  • PDF

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

MFMAP: Learning to Maximize MAP with Matrix Factorization for Implicit Feedback in Recommender System

  • Zhao, Jianli;Fu, Zhengbin;Sun, Qiuxia;Fang, Sheng;Wu, Wenmin;Zhang, Yang;Wang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2381-2399
    • /
    • 2019
  • Traditional recommendation algorithms on Collaborative Filtering (CF) mainly focus on the rating prediction with explicit ratings, and cannot be applied to the top-N recommendation with implicit feedbacks. To tackle this problem, we propose a new collaborative filtering approach namely Maximize MAP with Matrix Factorization (MFMAP). In addition, in order to solve the problem of non-smoothing loss function in learning to rank (LTR) algorithm based on pairwise, we also propose a smooth MAP measure which can be easily implemented by standard optimization approaches. We perform experiments on three different datasets, and the experimental results show that the performance of MFMAP is significantly better than other recommendation approaches.

Time-aware Collaborative Filtering with User- and Item-based Similarity Integration

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.149-155
    • /
    • 2022
  • The popularity of e-commerce systems on the Internet is increasing day by day, and the recommendation system, as a core function of these systems, greatly reduces the effort to search for desired products by recommending products that customers may prefer. The collaborative filtering technique is a recommendation algorithm that has been successfully implemented in many commercial systems, but despite its popularity and usefulness in academia, the memory-based implementation has inaccuracies in its reference neighbor. To solve this problem, this study proposes a new time-aware collaborative filtering technique that integrates and utilizes the neighbors of each item and each user, weighting the recent similarity more than the past similarity with them, and reflecting it in the recommendation list decision. Through the experimental evaluation, it was confirmed that the proposed method showed superior performance in terms of prediction accuracy than other existing methods.

The Effect of an Integrated Rating Prediction Method on Performance Improvement of Collaborative Filtering (통합 평가치 예측 방안의 협력 필터링 성능 개선 효과)

  • Lee, Soojung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.221-226
    • /
    • 2021
  • Collaborative filtering based recommender systems recommend user-preferrable items based on rating history and are essential function for the current various commercial purposes. In order to determine items to recommend, prediction of preference score for unrated items is estimated based on similar rating history. Previous studies usually employ two methods individually, i.e., similar user based or similar item based ones. These methods have drawbacks of degrading prediction accuracy in case of sparse user ratings data or when having difficulty with finding similar users or items. This study suggests a new rating prediction method by integrating the two previous methods. The proposed method has the advantage of consulting more similar ratings, thus improving the recommendation quality. The experimental results reveal that our method significantly improve the performance of previous methods, in terms of prediction accuracy, relevance level of recommended items, and that of recommended item ranks with a sparse dataset. With a rather dense dataset, it outperforms the previous methods in terms of prediction accuracy and shows comparable results in other metrics.

Applying Different Similarity Measures based on Jaccard Index in Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.47-53
    • /
    • 2021
  • Sparse ratings data hinder reliable similarity computation between users, which degrades the performance of memory-based collaborative filtering techniques for recommender systems. Many works in the literature have been developed for solving this data sparsity problem, where the most simple and representative ones are the methods of utilizing Jaccard index. This index reflects the number of commonly rated items between two users and is mostly integrated into traditional similarity measures to compute similarity more accurately between the users. However, such integration is very straightforward with no consideration of the degree of data sparsity. This study suggests a novel idea of applying different similarity measures depending on the numeric value of Jaccard index between two users. Performance experiments are conducted to obtain optimal values of the parameters used by the proposed method and evaluate it in comparison with other relevant methods. As a result, the proposed demonstrates the best and comparable performance in prediction and recommendation accuracies.

Rapid Hybrid Recommender System with Web Log for Outbound Leisure Products (웹로그를 활용한 고속 하이브리드 해외여행 상품 추천시스템)

  • Lee, Kyu Shik;Yoon, Ji Won
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.646-653
    • /
    • 2016
  • Outbound market is a rapidly growing global industry, and has evolved into a 11 trillion won trade. A lot of recommender systems, which are based on collaborative and content filtering, target the existing purchase log or rely on studies based on similarity of products. These researches are not highly efficient as data was not obtained in advance, and acquiring the overwhelming amount of data has been relatively slow. The characteristics of an outbound product are that it should be purchased at least twice in a year, and its pricing should be in the higher category. Since the repetitive purchase of a product is rare for the outbound market, the old recommender system which profiles the existing customers is lacking, and has some limitations. Therefore, due to the scarcity of data, we suggest an improved customer-profiling method using web usage mining, algorithm of association rule, and rule-based algorithm, for faster recommender system of outbound product.

A sequence-based personalized service for the short life cycle products (수명주기가 짧은 상품들에 대한 시퀀스 기반 개인화 서비스)

  • Choi, Ju-Choel
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.293-301
    • /
    • 2017
  • Most new products not only suddenly disappear in the market but also quickly cannibalize older products. Under such a circumstance, retailers may have too much stock, and customers may be faced with difficulties discovering products suitable to their preferences among short life cycle products. To address these problems, recommender systems are good solutions. However, most previous recommender systems had difficulty in reflecting changes in customer preferences because the systems employ static customer preferences. In this paper, we propose a recommendation methodology that considers dynamic customer preferences. The proposed methodology consists of dynamic customer profile creation, neighborhood formation, and recommendation list generation. For the experiments, we employ a mobile image transaction dataset that has a short product life cycle. Our experimental results demonstrate that the proposed methodology has a higher quality of recommendation than a typical collaborative filtering-based system. From these results, we conclude that the proposed methodology is effective under conditions where most new products have short life cycles. The proposed methodology need to be verified in the physical environment at a future time.

Similarity-based Service Recommendation for Service-Mashup Developers (서비스 매쉬업 개발자를 위한 유사도 기반 서비스 추천 방법)

  • Kim, HyunSeung;Ko, InYoung
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.908-917
    • /
    • 2017
  • As web service technologies are widely used, there have been many efforts to develop approaches for recommending appropriate web services to users in complex and dynamic service environments. In addition, for the effective development of service mashups, service recommender systems that are specialized for service composition have been developed. However, existing service recommender systems for service mashups are not effective at recommending services in a personalized manner that reflect developers' preferences. To deal with this issue, we propose an approach that recommends services based on the similarities between mashup developers who have developed similar service mashups. The proposed approach is then evaluated by using the mashup data retrieved from ProgrammableWeb. The evaluation results clearly show that the proposed approach is an effective way of improving service recommendations compared to the traditional user-based collaborative filtering algorithm.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.