• 제목/요약/키워드: Collaborative Recommender Systems

검색결과 203건 처리시간 0.023초

사용자 선호도 변화에 따른 추천시스템의 다양성 적용 (Application of diversity of recommender system accordingtouserpreferencechange)

  • 나혜연;남기환
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.67-86
    • /
    • 2020
  • 추천시스템은 시간이 흐를수록 사용자와 기업에게 점점 더 큰 영향을 주고 있다. 최근 코로나(COVID-19) 팬데믹 현상이 전 세계적으로 일어나면서 세대를 뛰어넘어 E-Commerce의 중요성이 증대되었고 추천시스템은 E-Commerce 활성화의 최중심에 있다. 추천시스템이 개발된 이래로 다수의 알고리즘이 추천시스템의 정확도를 올리는 것에 집중되어 있었고, 추천시스템의 희귀성, 다양성, 우연성 등과 같은 다른 가치들이 간과되고 있다. 본 논문에서는 사용자의 만족도는 추천시스템의 정확도에만 달려있지 않고 다양한 성능을 겸비했을 때 고객에게 만족스러운 추천서비스 경험을 제공할 것이라 생각하여 다양성을 위한 그래프 기반의 추천시스템을 개발하였다. 사용자 네트워크를 구성한 뒤 카테고리를 활용한 무게중심변화를 통해 유사도가 낮은 이질적인 사용자를 찾아 추천상품의 유사성을 낮추는 방식으로 다양성을 도모하였다. 또한, 추천의 다양성은 사용자의 다양성 선호 수준에 따라 상이할 것이라는 가정에 따라 사용자의 다양성 선호 수준을 구별하였고 다양성 모델 성능이 사용자 특성별로 다름을 확인할 수 있었다. 전체 연구 결과, 추천시스템의 정확성과 다양성이 트레이드 오프 관계에 놓여있다는 것을 확인할 수 있었지만 본 연구모델을 통해 근소한 정확도 손실 대비 높은 다양성을 얻을 수 있었다. 본 연구는 그래프 기반의 추천시스템을 통해 사용자의 만족도를 향상시키는 다양성을 실현하였다는 연구적 의의와 사용자 수준을 고려한 추천의 다양성을 적용 결과를 통해 기업의 장기적 이윤을 상승시킬 수 있는 모델 개발이라는 실무적 의의를 꼽을 수 있다.

Movie Recommendation Algorithm Using Social Network Analysis to Alleviate Cold-Start Problem

  • Xinchang, Khamphaphone;Vilakone, Phonexay;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.616-631
    • /
    • 2019
  • With the rapid increase of information on the World Wide Web, finding useful information on the internet has become a major problem. The recommendation system helps users make decisions in complex data areas where the amount of data available is large. There are many methods that have been proposed in the recommender system. Collaborative filtering is a popular method widely used in the recommendation system. However, collaborative filtering methods still have some problems, namely cold-start problem. In this paper, we propose a movie recommendation system by using social network analysis and collaborative filtering to solve this problem associated with collaborative filtering methods. We applied personal propensity of users such as age, gender, and occupation to make relationship matrix between users, and the relationship matrix is applied to cluster user by using community detection based on edge betweenness centrality. Then the recommended system will suggest movies which were previously interested by users in the group to new users. We show shown that the proposed method is a very efficient method using mean absolute error.

개인화된 전문가 그룹을 활용한 추천 시스템 (Personalized Expert-Based Recommendation)

  • 정연오;이성우;이지형
    • 한국지능시스템학회논문지
    • /
    • 제23권1호
    • /
    • pp.7-11
    • /
    • 2013
  • 전문가의 지식을 기반으로 한 추천시스템에 대한 다양한 연구가 최근 활발히 진행되고 있다. 지금까지의 전문가 기반 추천 시스템이 공통된 전문가 그룹의 지식을 바탕으로 모두에게 아이템을 추천하였다면, 본 논문에서는 개인의 필요와 전문가에 대한 관점을 반영한 개인화된 전문가 그룹의 지식을 기반으로 한 추천 시스템을 제안한다. 개인화된 전문가 그룹을 찾는 과정이 제안하는 추천 시스템에서 가장 중요한 부분이다. 이를 위해 개인화된 전문가를 효율적으로 찾아내는 지지 벡터 머신(SVM) 기반 기법을 제안한다. 추천 시스템에서 널리 사용되는 k 근접이웃 알고리즘과의 비교를 통하여서 개인화된 전문가를 기반으로 한 협업 필터링 추천 시스템의 효용성을 입증한다.

이동통신 환경 하에서의 고객관계관리를 위한 지역광고 추천 모형 (Location-based Advertisement Recommendation Model for Customer Relationship Management under the Mobile Communication Environment)

  • 안현철;한인구;김경재
    • Asia pacific journal of information systems
    • /
    • 제16권4호
    • /
    • pp.239-254
    • /
    • 2006
  • Location-based advertising or application has been one of the drivers of third-generation mobile operators' marketing efforts in the past few years. As a result, many studies on location-based marketing or advertising have been proposed for recent several years. However, these approaches have two common shortcomings. First. most of them just suggested the theoretical architectures, which were too abstract to apply it to the real-world cases. Second, many of these approaches only consider service provider (seller) rather than customers (buyers). Thus, the prior approaches fit to the automated sales or advertising rather than the implementation of CRM. To mitigate these limitations, this study presents a novel advertisement recommendation model for mobile users. We call our model MAR-CF (Mobile Advertisement Recommender using Collaborative Filtering). Our proposed model is based on traditional CF algorithm, but we adopt the multi-dimensional personalization model to conventional CF for enabling location-based advertising for mobile users. Thus, MAR-CF is designed to make recommendation results for mobile users by considering location, time, and needs type. To validate the usefulness of our recommendation model. we collect the real-world data for mobile advertisements, and perform an empirical validation. Experimental results show that MAR-CF generates more accurate prediction results than other comparative models.

Collaborative Movie Recommender Considering User Profiles Explicitly

  • Qing Li;Kim, Byeong-Man;Shin, Yoon-Sik;Lim, En-Ki
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.386-388
    • /
    • 2003
  • We are developing a web-based movie recommender system that catches and reasons with user profiles and ratings to recommend movies. In the paper, we outline the current status of our implementation with particular emphasis on the mechanisms used to provide effective recommendations. Social recommender systems collect ratings of items from many individuals and use nearest-neighbor techniques to make recommendations to a user. However, these methods only depend on the ratings and ignore other useful information. Our primary concern is to provide an approach that can recommend the movies based on not only the user ratings but also the significant amount of other information that is available about the nature of each items - such as cast list or movie genre. We experimentally evaluate our approach and compare them to conventional social filtering, which suggests merits to our approach.

  • PDF

추천시스템을 위한 내용기반 필터링과 협력필터링의 새로운 결합 기법 (A New Approach Combining Content-based Filtering and Collaborative Filtering for Recommender Systems)

  • 김병만;이경;김시관;임은기;김주연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.332-342
    • /
    • 2004
  • 엄청난 속도로 증가하고 있는 정보의 홍수 시대에서는 정보들을 선별하기 위하여 정보 필터링기법이 필요하다. 정보 필터링은 내용 기반 방법과 협력에 의한 방법으로 분류할 수 있다. 내용 기반 기법에서는 내용에 기반을 두어 정보를 추출하는 반면 협력 기법은 다른 사람들의 의견을 이용하게 된다. 본 논문에서는 기존 협력 필터링 방법의 문제점을 해결하기 위한 방법의 일환으로 내용 기반 기법과 협력 기법을 보다 유기적으로 결합시키는 연구를 수행하였다. 이를 위해 협력 필터링 틀을 그대로 유지하면서 사용자 프로파일을 효과적으로 이용하는 방법을 제안하였다. 또한, 본 논문에서 제시한 기법을 실험적으로 분석하고 기존의 필터링 기법과 비교하였다. 실험 결과, 본 방법이 예측 질 면에서 상당한 성능 향상이 있었고 새로운 사용자에게도 보다 나은 추천을 할 수 있음을 알 수 있었다.

이웃 선정 조건에 따른 협력 필터링의 성능 향상 분석 (Analysis of Performance Improvement of Collaborative Filtering based on Neighbor Selection Criteria)

  • 이수정
    • 컴퓨터교육학회논문지
    • /
    • 제18권4호
    • /
    • pp.55-62
    • /
    • 2015
  • 협력 필터링을 통한 추천 시스템은 정보 검색 편의성을 제공함으로써 다방면에서 성공적으로 활용되어왔다. 유사도 측정은 추천인들의 범위를 결정하는 기준이 되기 때문에 이러한 시스템의 성능을 좌우하는 결정적 요소이다. 본 연구에서는 기존의 유사도 측정 공식에서 산출되는 유사도값의 분포를 분석하고, 유사도값과 공통평가항목수와의 관계를 조사하였다. 이를 통해 발견된 문제점을 보완하기 위하여 유사도값의 제한을 통하여 신뢰할 만한 추천인들을 선정하는 방법을 제시하였다. 실험 결과, 유사도의 상한값과 하한값을 동시에 제한하는 방법이 기존보다 월등한 성능 향상을 가져왔다. 특히 적은 수의 최인접이웃을 참조했을 때 두드러졌는데, 코사인 유사도에 대해서는 최대 0.047, 피어슨에 대해서는 최대 0.03의 추천 성능 향상을 보였다. 이 결과는 피어슨과 코사인 유사도를 이용하는 협력필터링 시스템에서 매우 높거나 낮은 유사도의 이웃의 평가 등급은 참조하지 않는 것이 바람직함을 암시한다.

협업 필터링 추천에서 대응평균 알고리즘의 예측 성능에 관한 연구 (A study on the Prediction Performance of the Correspondence Mean Algorithm in Collaborative Filtering Recommendation)

  • 이석준;이희춘
    • 경영정보학연구
    • /
    • 제9권1호
    • /
    • pp.85-103
    • /
    • 2007
  • 본 연구의 목적은 좀 더 정확한 고객 선호도 예측을 위한 협업 필터링 알고리즘의 예측 성능을 평가하기 위한 것이다. 고객 선호도 예측의 정확도를 비교하기 위하여 이웃 기반의 협업 필터링 알고리즘과 대응평균 알고리즘에 의한 고객 선호도 예측의 MAE를 비교하였다. 예측 알고리즘의 정확성을 분석하기 위하여 MovieLens 1 Million dataset을 이용하여 실험을 하였다. 각 예측 알고리즘에 사용된 유사도 가중치는 일반적으로 이용되는 피어슨 상관계수와 벡터 유사도를 이용하였으며 분석결과 대응평균 알고리즘의 예측 정확도가 이웃 기반의 협업 필터링 알고리즘의 예측 정확도 보다 우수한 것으로 나타났다. 두 알고리즘에 사용된 유사도 가중치인 피어슨 상관계수와 벡터 유사도는 두 고객이 특정 상품에 대하여 공통으로 평가한 선호도 평가치를 이용하여 계산된다. 이때 공통으로 평가한 선호도 평가치의 개수가 적으면 계산된 유사도 가중치가 과대 평가된다. 과대 평가된 유사도 가중치를 보정하여 고객 선호도 예측의 정확도를 높이기 위하여 기존의 연구에서 고려한 공통 평가 영화의 개수 보다 확대된 범위를 적용하였으며 각 예측 방법에 따라 서로 다른 개선 경향을 파악할 수 있었다.

Shilling Attacks Against Memory-Based Privacy-Preserving Recommendation Algorithms

  • Gunes, Ihsan;Bilge, Alper;Polat, Huseyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권5호
    • /
    • pp.1272-1290
    • /
    • 2013
  • Privacy-preserving collaborative filtering schemes are becoming increasingly popular because they handle the information overload problem without jeopardizing privacy. However, they may be susceptible to shilling or profile injection attacks, similar to traditional recommender systems without privacy measures. Although researchers have proposed various privacy-preserving recommendation frameworks, it has not been shown that such schemes are resistant to profile injection attacks. In this study, we investigate two memory-based privacy-preserving collaborative filtering algorithms and analyze their robustness against several shilling attack strategies. We first design and apply formerly proposed shilling attack techniques to privately collected databases. We analyze their effectiveness in manipulating predicted recommendations by experimenting on real data-based benchmark data sets. We show that it is still possible to manipulate the predictions significantly on databases consisting of masked preferences even though a few of the attack strategies are not effective in a privacy-preserving environment.