• Title/Summary/Keyword: Cold-rolled steel sheet

Search Result 103, Processing Time 0.029 seconds

Dissolution of Carbide Particles at the Heat Affected Zone of Laser Welded tow Carbon Steel (저탄소 박판강재의 레이저 용접과정에서 열영향부에 존재하는 탄화물 입자의 분해 거동)

  • 김기철;조흥규;정호신
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.809-815
    • /
    • 2002
  • Metallurgical behavior of laser welded cold rolled low carbon steel was investigated. Welding was performed with CW Nd:YAG laser system. Applied laser power, travel speed and nitrogen blowing pressure were 720W CW, 17mm/s and 196kPa, respectively. According to the test results, many carbide particles were observed on the base metal surface that was polished and etched with nital solution. The carbide particles at the welding heat affected zone were thought to be dissolved during welding process. Microstructural inspection revealed that dissolved carbide particles formed mixed phase of very fine martensite and bainite. Test results also demonstrated that the hardness of matrix remained constant value of around 160Hv over the welding heat affected zone. Dissolved carbide particles, however, showed higher average hardness values of around 276Hv near the fusion boundary and 700Hv at the welding heat affected zone of 0.4mm apart from the fusion line. It was considered that care should be given to minimize the test error when measuring the hardness value since many of the dissolved particles were so small that it was not easy to aim the indentor of the testing machine just on the objects.

Effect of Si content on Nugget Diameter of Electric Resistance Spot Welded Dual Phase Steel (DP강의 전기저항점용접부 너깃직경에 미치는 Si 함량의 영향)

  • Kong, Jong-Pan;Kang, Gil-Mo;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.99-105
    • /
    • 2011
  • In this study, effect of Si content on nugget diameter in electric resistance spot welded dual-phase(DP) steel was investigated. The cold rolled DP steels with different Si content (0.5, 1.0, 1.5, 2.0 wt.%) were used and thickness of those sheet was 1.2mm. With increasing Si content, nugget diameter was increased at the same welding current. This is attributed to increase of heat input result from high resistivity. Also, nugget diameter was increased with an increase in Si content for the same heat input. For this reason, the melting point of DP steel is lowered with an increase in the Si content. And solid DP steel can easily be transformed to a liquid phase because the low melting point. Finally, a prediction formula for the nugget diameter(N.D.) could be obtained in terms of heat input(Q) and melting point(M.P) as follows: N.D.(mm) = 0.11Q(J) - 0.0031 M.P.($^{\circ}C$) + 0.32.

A Study on Characteristics of Automatic Flatness Control System of Contact Type (접촉식 자동 형상제어 장치의 특성에 관한 연구)

  • Kim, Moon-kyung;Jeon, Eon-chan;Kim, Soon-kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.67-73
    • /
    • 1996
  • The necessity for more accurate automatic flatness control(AFC) system has increased of customers' requirement for cold rolled steel sheet. Therefore, many cold rolling mills replaced its AFC system with a measuring roll of the contact type form the non-contact type. In this paper. The performance of AFC system of contact type has been investigated under industrial conditions. It has two kinds of actuator: roll bender, spot cooling system. The test results are as follows: The more strip thickness is thick, the smaller the I value, and the more it is thin, the bigger the I value. And a complex distribution of strip tension was controlled, for example, not only a pocket wave but also a simple center wave and edge wave. Because the tension deviation is larger at acceler- ation speed and decelerationspeed than steady speed, AFC system of contact type is better to adopt over 50m/mim. AFC system reduces rapidly large flatness deviation. The maximum I value of strip has been decreased to 13 I, and sticker, defects caused by poor flatness, have been decreased about 60%.

  • PDF

Effect of Heat Treatment on the Corrosion Resistance of the Al-Mg Coated Steel Sheet (열처리가 Al-Mg 코팅 강판의 내식성에 미치는 영향)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Song, Min-A;Kim, Sung-Hwan;Jeong, Jae-In;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Double layer films which consisted of aluminum(Al) and magnesium(Mg) have been prepared by e-beam deposition. The structure, alloy phase, and corrosion resistance of the prepared films were investigated before and after heat treatment. The first (bottom) layer fixed with Al, and the thickness ratio between Al and Mg layers has been changed from 1 : 1 to 5 : 1, respectively. Total thickness of Al-Mg film was fixed at $3{\mu}m$. The cold-rolled steel sheet was used as a substrate. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 2, 3 and 10 min. Surface morphology of as-deposited Al-Mg film having Mg top layer showed plate-like structure. The morphology was not changed even after heat treatment. However, cross-sectional morphology of Al-Mg films was drastically changed after heat treatment, especially for the samples heat treated for 10 min. The morphology of as-deposited films showed columnar structure, while featureless structure of the films appeared after heat treatment. The x-ray diffraction data for as-deposited Al-Mg films showed only pure Al and Mg peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ appeared after heat treatment of the films. It is believed that the formation of Al-Mg alloy phase affected the structure change of Al-Mg film. It was found that the corrosion resistance of Al-Mg film was increased after heat treatment.

A Study on the Spot Welding and Fatigue Design of High Strength Steel Sheets for Light Weight Vehicle Body (경량 차체용 고장력 강판의 Spot 용접과 피로설계에 관한 연구)

  • Heo, Jeong-Beom;Bae, Dong-Ho;Yoon, Chi-Sang;Kwon, Soon-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The recent tendency in the automobile industries is toward light weighting vehicle body to improve the problems by environmental pollution as well as improving fuel cost. The effective way to reduce the weight of vehicle body seems to be application of new materials for body structure and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheet (for example, 301L and 304L), TRIP steel and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life design criteria of body structure, it is important and require condition to assess spot weldability of them and fatigue strength of spot welded lap joints which were fabricated under optimized spot welding condition. And, recently, a new issue in the design of the spot welded structure is to predict economically fatigue design criterion without additional fatigue tests. In general, for fatigue design of the spot-welded thin sheet structure, additional fatigue tests according to the welding condition, material, joint type, and fatigue loading condition are generally required. This indicates that much cost and time for it should be consumed. Therefore, in this paper, the maximum stresses at nugget edge of spot weld were calculated through nonlinear finite element analysis first. And next, obtained the ${\Delta}P-N_{f}$ relation through the actual fatigue tests on spot welded lap joints of similar and dissimilar high strength steel sheets. And then, the ${\Delta}P-N_{f}$ relation was rearranged in the ${\Delta}{\sigma}-N_{f}$ relation. From this ${\Delta}{\sigma}-N_{f}$ relation, developed the fatigue design technology for spot welded lap joints of them welded using the optimized welding conditions.

  • PDF

Effect of Deposit Conditions on Composition of Sn-Zn Alloy Deposits (Sn-Zn합금도금 조성에 미치는 도금조건의 영향)

  • 배대철;김현태;장삼규;조경목
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.537-544
    • /
    • 2001
  • In the present study, tin-zinc alloys were coated on a cold-rolled steel sheet with variations of electrolyte concentration, additives quantity and current density employing the Hull cell and circulation cell simulator. With an addition of additives of 2m1/L, tin-zinc deposits containing 10 to 40 percent Zn revealed a good surface appearance with weak acidic electrolytes. The organic additives suppressed the Sn deposition rate and thus increased the zinc contents in tin-zinc coating layers. The zinc contents in the tin-zinc coating layers depended almost linearly on the concentrations of metal ions of tin and zinc. Temperature of the electrolyte affected the composition tin-zinc coating layer. However, the concentration of complexants revealed little effectiveness. The surface morphology of tin-zinc coating showed dense tin and zinc phases with fine equiaxed grains with the high current density.

  • PDF

A study on the cutting punch shape about roll forming process (롤 포밍 공정에서 컷팅 펀치 형상에 관한 연구)

  • Cheong, Mun-Su
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.34-38
    • /
    • 2016
  • Roll forming is a continuous production process that is mass-produced. The roll forming process is produced in various forms. The special feature of roll forming is a continuous production. Therefore, the process of cutting the material is essential. The troubles in a shearing process affects the low productivity. Accordingly, it is important to reduce the factors that inhibit the material flow. And it is difficult to apply the common shear angle. Because it is not a simple forms, such as a progressive die. This study shows how to select the angle of a shear punch and the shape of a cutting punch in the product with a specific shape. Conclusively through three different model, it is advantageous to apply the different shear angle and clearance along the forms.

축대칭 벌징형 하이드로포밍 공정에대한 이론 및 실험적 연구

  • 양동열;최선준;정완진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1990.04a
    • /
    • pp.83-88
    • /
    • 1990
  • The study is concerned with the theoretical and experimental investigation of axisymmetric fluid pressure-drive hydronforming of sheet metal by forming over the die cavity. The rigid-plastic finite element method is employed to calculate the stress and strain distribution The effect of blank size and die radius is also studied in the finite element analysis. Experiments are carried out for hydroforming of cold rolled steel sheets under various process conditions. The computational results are compared with the experimental results for the forming pressure vs. pole displacement relations and strain distributions. Comparison has shown that theoretical predictions by the finite element method are in good agreement with the experimental observations. Thus, it is shown that the rigid-plastic finite element method is effectively used in the analysis of axisymmetric fluid pressure-driven hydroforming process.

A Study of Fatigue Life Prediction for Automotive Spot Weldment using Local Strain Approach (국부변형률근사법을 이용한 차체 점용접부의 피로수명 예측에 관한 연구)

  • Lee, Song-In;Na, Sung-Hun;Na, Eui-Gyun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.61-66
    • /
    • 2000
  • The fatigue crack initiation life is studied on automotive spot weldment made from cold rolled carbon steel(SPC) sheet by using DCPDM and local strain approach. It can be found that the fatigue crack initiation behavior in spot weldment can be definitely detected by DCPDM system. The local stresses and strains are estimated by elastic-plastic FEM analysis and the alternative approximate method based on Neuber's rule were applied to predict the fatigue life of spot weldment. A satisfactory correlation between the predicted life and experimental life can be found in spot weldment within a factor of 4.

  • PDF

Evaluation on the Influence and Measurement of Strain in Spot Welded Joint (점 용접부의 변형률 측정 및 영향 평가)

  • 차용훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.52-57
    • /
    • 1997
  • Electronic Speckle Pattern Interferometry(ESPI) using the Model 95 Ar. laser, a video system and an image processor was applied to the in-plane displacement measurements. Unlike traditional strain gauges or Moire method, ESPI method requires no special surface preparation or attachments and can be measured in-plane displacement with no special surface preparation or attachments and can be measured in-plane displacement with no contact and real time. In this experiment specimen was loaded in parallel with a loadcell. The specimen was the cold rolled steel sheet of 2mm thickness, which was attached strain gauges. The study provides an example of how ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI compare with the data which was measured by strain gauge method in tensile testing.

  • PDF