• Title/Summary/Keyword: Cold-flow Test

Search Result 224, Processing Time 0.019 seconds

Study on Breakup Characteristics of Gel Propellant Using Pressure Swirl Injector (압력선회형 인젝터를 이용한 젤 추진제의 분열특성 연구)

  • Cho, Janghee;Lee, Donghee;Kim, Sulhee;Lee, Donggeun;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • In this study, cold-flow test of simulant gel is conducted using a pressure swirl injector to identify spray characteristics according to gellant weight percent. Experiment results show the aircore is developed locally at the nozzle and expanded to the entire swirl chamber as the supply pressure increases. The aircore formation of simulant gel showed no significant difference compared to Newtonian fluid. The spray pattern was classified into four distinct shapes where relationship between the breakup regimes and dimensionless numbers were investigated. In the future, additional study is necessary to understand the aircore formation mechanism, stability and spray characteristics at different configuration of the swirl chamber shape.

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

The Effect of Spiral Balance Taping on Postoperative Sequelae in Breast Cancer : Case study (스파이랄 발란스 테이핑이 유방암 환자의 수술 후 후유증에 미치는 영향 : 사례연구)

  • Su-Ji Kang;Dae-Hee Lee;Cheul Jang;Back-Vin Lim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.3
    • /
    • pp.37-47
    • /
    • 2024
  • Purpose : Cancer survivors often suffer from postoperative sequelae. the diagnosing and provision of manual therapy using spiral taping significantly improves the quality of life of cancer patients. The aim of this case study is to investigate the immediate effects of spiral taping on pain, range of motion (ROM), chemotherapy-induced peripheral neuropathy (CIPN), and lymphedema following breast cancer surgery. Methods : The taping techniques were performed as follows by spiral taping. The measurements were taken before, in the middle, and after taping using a mobile phone camera, tape measure, and a numerical rating score (NRS). The evaluation employed a single-group pre-post design based on a primitive experimental design. Results : Out of four patients, all four exhibited Reverse circle flow energy (RCFE), Passive cervical right (Rt) rotation test, anterior-posterior movement pattern, nerve type (+), cold energy (CE), sangcho acupuncture point, blood clot, hwal point. Comparing before and after treatment, almost all values were reduced to zero after treatment in terms of pain complaints. The lack of range of motion (ROM) caused by the shortened tissue after surgery did not increase. The range of motion (ROM) lost due to pain returned to normal. The circumference of lymphedema did not show a tendency. The symptoms of CIPN improved. Conclusion : There was a significant change in joint range of motion, with pain decreasing, but there were structural limitations in the tissue due to total resection, and the chemotherapy-induced peripheral neuropathy scale. It was effectively treated surgical site pain, axillary membrane syndrome-induced pain, and unexplained pain. While there was a treatment effect for lymphedema in the evaluation of circumference values, there was no significant change in circumference. There was a significant effect on chemotherapy-induced peripheral neuropathy, particularly in treating numbness in the feet, which is a side effect of TC anticancer drugs. This case study found that spiral balance taping provides a rapid therapeutic effect for most side effects in patients who have undergone total breast cancer resection. However, the generalization is limited due to the small sample size, and further research is needed to determine the extent to which the effects of one treatment are maintained.