• Title/Summary/Keyword: Cold-Bonding Repair

Search Result 3, Processing Time 0.016 seconds

Nondestructive Evaluation of Temporarily Repaired CFRP Laminates Subjected to Delaminations due to Localized Heating and Cyclic Loading Combined

  • Han, Tae-Young;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.268-279
    • /
    • 2007
  • The reliability of cold-bonding repair technique of carbon-fiber reinforced plastics (CFRP) laminates, often used as a temporary repair for the airplane maintenance, has been evaluated during cyclic loading and localized heating by nondestructive methods. Major concern was given to the evolution of damage after repair in the form of delaminations due to localized heating and cyclic loading combined. An area of interest both on the specimen repaired by cold-bonding and the specimen without repair where delaminations were induced by localized heating and cyclic loading was monitored by acoustic emission (AE) testing and further examined by pitch-catch low-frequency bond testing, and pulse-echo high-frequency ultrasonic testing. The results showed that the reliability of cold-bonding repair would be significantly reduced by the localized heating and cyclic loading combined rather than by the cyclic loading only. AE monitoring appeared to be an effective and reliable tool to monitor the integrity of temporarily repaired CFRP laminates in terms of the structural health monitoring (SHM) philosophy.

A Study for Selection and Field Applicability of Asphalt Precast Pothole Repair Materials (아스팔트 프리캐스트 포트홀 보수재료의 선정과 현장 적용성에 관한 연구)

  • Kim, Jincheol;Bae, Sungho;Lee, Jinho;Yang, Jaebong;Kim, Jiwon
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.21-33
    • /
    • 2014
  • PURPOSES: The purpose of this study was to break away from the workforce method using cold-mix asphalt mixtures and has a constant quality and has develop repair materials of pre-production asphalt-precast types. METHODS: The selection of the repair material was determined as the results obtained through physical properties of materials and the field applicability. In case of repair materials, values obtained through Marshall stability test & the dynamic stability test & retained stability test as well as the site conditions was considered. In case of adhesive, test results were obtained through examination of the bond strength(tensile, shear) and the field applicability of the adhesive was examined through combined specimens to simulate field applications. RESULTS : According to the results of laboratory tests, in the case of repair materials, Marshall stability and dynamic stability, retained stability of cold-mix reaction type asphalt mixture is the highest. In the case of adhesive, two-component epoxy-urea has a very high bonding strength(tensile, shear) was most excellent. According to the results of field tests, when epoxy-urea was excellent workability. Also, the repair body through actual mock-up test did not occur large deformation and fracture after 12 months. CONCLUSIONS : A suitable repair material is cold-mix reaction type mixture of asphalt-precast, a suitable adhesive is a two-component epoxy-urea.

Development of a Spray-Injection Patching System and a Field Performance Evaluation of 100% RAP Asphalt Mixtures using a Rapid-Setting Polymer-Modified Asphalt Emulsion (아스팔트 긴급보수용 스프레이 패칭 장비 개발 및 현장 적용성 평가)

  • Han, Soo Hyun;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • PURPOSES : The purpose of this study was to develop an urgent road-repair system and perform a field applicability test, as well as discover the optimum mix design for machine applications compared to the optimum mix design for lab applications. METHODS : According to reviews of the patent and developed equipment, self-propelled and mix-in-place equipment types are suitable for urgent pavement repair, e.g., potholes and cracks. The machine-application mix design was revised based on the optimum lab-test mix design, and the field application of a spray-injection system was performed on the job site. The mixture from the machine application and lab application was subjected to a wet-track abrasion test and a wheel-tracking test to calibrate the machine application. RESULTS and CONCLUSIONS : This study showed that the binder content could differ for the lab application and the machine application in the same setting. Based on the wet-track abrasion test result, the binder contents of the machine application exceeded the binder contents of the lab application by 1-1.5% on the same setting value. Moreover, the maximum dynamic stability value for the machine application showed 1% lower binder contents than the maximum lab-application value. Collectively, the results of the two different tests showed that the different sizes and operating methods of the machine and lab applications could affect the mix designs. Further studies will be performed to verify the bonding strength and monitor the field application.