• Title/Summary/Keyword: Cold weather concrete

Search Result 170, Processing Time 0.028 seconds

Mock-Up Test on The Performance for Wind Resistance of Improved Curing Sheet in Cold Weather Concrete (한중 콘크리트용 개량형 양생막의 내풍성능에 관한 Mock-Up 실험)

  • Choi, Hyun-Kyu;Baek, Dae-Hyun;Son, Myong-Sik;Lee, Ho-Seong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.37-38
    • /
    • 2011
  • This study is to analyze and compare improved curing sheet with blue sheet in order to verify the performance related to tensile stress. As results, it is confirmed that improved curing sheet(MP+BBS1) is better than the blue sheet at using field already. Synthetically, curing sheet improved by MP is analyzed to be available instead of the original because it is superior to tensile stress.

  • PDF

A Study on Properties of Concrete Correponding to Various High Early Strength Agents (조강형 혼화제 종류에 따른 콘크리트의 특성에 관한 연구)

  • Yoo, Seung-Yeup;Lee, Sang-Rae;Koo, Ja-Sul;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.313-314
    • /
    • 2010
  • This study investigates properties of concrete corresponding to various high early strength agents. It was presented as reference data for reducing construction cost and improving quality of cold weather concrete through reduction of construction time.

  • PDF

A Fundamental Study on the Effectiveness of Cold Weather Concreting Using Anti-freeze Agent and Insulating Form (Focused on the Slab) (내한제 및 단열거푸집에 의한 한중콘크리트 시공의 효율화에 관한 기초적 연구 (슬래브를 중심으로))

  • Kim, Kyoung-Min;Won, Cheol;Hong, Sang-Hee;Kim, Gi-Cheol;Oh, Sun-Kyo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.913-918
    • /
    • 2001
  • This paper investigates insulating effects and strength properties of concrete under cold climate carrying out the experiment with insulating forms on the slab member. According to test results, under $-10^{\circ}C$ of outer temperature, the surface of concrete exposed to outer temperature goes below zero after 10hours since exposed. And, the surface of concrete covered with vinyl and blanket goes below zero after 42hours. However, the surface of concrete covered with insulating materials such as polystyrene foam does not drop below zero until 55hours. And, according to coring sample strength test, compressive strength cured with insulation shows much higher strength than no insulation curing condition and vinyl and blanket curing condition.

  • PDF

Field Application of Surface Insulation Curing Method to Cold Weather Concreting (한중콘크리트의 현장 표면단열 양생공법 시공사례 연구)

  • Kim Jong-Back;Lim Choon-Goun;Han Min-Cheol;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

Effect of the Kind of Modified Bubble Sheets on the Temperature Profiles and Crack Reduction of the Concrete under Hot Weather (표면개량 버블시트 종류 변화가 서중환경 콘크리트의 온도 및 균열발생에 미치는 영향)

  • Lee, Sang-Woon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2018
  • There are various quality deteriorations of concrete such as plastic, drying shrinkage due to abrupt moisture evaporation, slump loss and cold joint under hot weather condition. To protect from above deteriorations, several kinds of modified bubble sheets have been applied to secure heat insulation performance. But, there is not enough application cases of bubble sheets at job site under hot weather condition. The objective of the paper is to investigate the temperature profile and crack occurrence of the concrete covered with five different kinds of surface curing sheets, which is placed under hot weather condition. Single layer transparent bubble sheet, white colored bubble sheet, aluminum metalizing bubble sheet and PE film are adopted for surface curing sheets. Test results indicated that application of aluminum metalizing bubble sheet had most favorable effect on the reduction of on temperature rise and on the crack reduction of concrete. But due to larger reflection of light by aluminum, it brings about visual pollution to the workers. Hence, the application of white colored bubble sheet can be the most desirable alternative to protect the concrete from hot weather in the field.

Properties of Iron Powder and Activated Carbon mixed Matrix for the Improvement of Cold Weather Concrete (한중콘크리트 개선을 위한 철가루와 활성탄 혼입 경화체 기초연구)

  • Kim, Won-Jong;Kim, Won-Sik;Kim, Gyu-Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.175-176
    • /
    • 2022
  • By studying the characteristics of matrix insulated through heat generated through oxidation of iron powder, the basic research results on the possibility of buffering and applicability of Cold weather concrete as a curing method are presented. In order to prevent freezing due to a sharp decrease in temperature in the initial stage of curing, iron powder (Fe), powder activated carbon, which is a small amount of porous carbonaceous adsorbent, and salt (NaCl) as an oxidizing agent are replaced with iron powder admixture. As the curing temperature increases, the strength tends to increase, and when replacing the admixture at the same curing temperature, the strength slightly decreases. This is determined as a result of generating iron oxide through an oxidation reaction of iron powder, activated carbon, and NaCl generating a large amount of pores in the matrix. In addition, the internal temperature tends to increase as the mixing substitution rate increases, and it is judged that the oxidation heat of the iron powder mixture affects the increase of the internal temperature during curing. The higher the replacement rate of the iron powder mixture, the slightly lower the strength, but it is determined that freezing and melting that may occur in the early stage of curing can be prevented due to an increase in the initial internal temperature.

  • PDF

Temperature and humidity effects on behavior of grouts

  • Farzampour, Alireza
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.659-669
    • /
    • 2017
  • Grouts compared to other material sources, could be highly sensitive to cold weather conditions, especially when the compressive strength is the matter of concern. Grout as one the substantial residential building material used in retaining walls, rebar fixation, sidewalks is in need of deeper investigation, especially in extreme weather condition. In this article, compressive strength development of four different commercial grouts at three temperatures and two humidity rates are evaluated. This experiment is aimed to assess the grout strength development over time and overall compressive strength when the material is cast at low temperatures. Results represent that reducing the curing temperature about 15 degrees could result in 20% reduction in ultimate strength; however, decreasing the humidity percentage by 50% could lead to 10% reduction in ultimate strength. The maturity test results represented the effect of various temperatures and humidity rates on maturity of the grouts. Additionally, the freeze-thaw cycle's effect on the grouts is conducted to investigate the durability factor. The results show that the lower temperatures could be significantly influential on the behavior of grouts compared to lower humidity rates. It is indicated that the maturity test could not be valid and precise in harsh temperature conditions.

A Review on the Determination of the Protecting Duration of Frost Damage at Early Ages in Cold Weater Concreting Based on the Analysis of Strength Development (강도증진해석에 의한 한중콘크리트의 초기동해 방지기간 설정에 관한 검토)

  • 한민철;김효구;황인성;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.179-182
    • /
    • 1999
  • A protections from the frost damage at early ages is one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such surface cracks and the loss of strength. Therefore, in this paper, the protecting durations of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. According to the results, as W/C and compressive strength for protecting from frost damages at early ages increased, longer protecting duration is required. It shows that the protecting durations of FAC(Fly Ash Cement) are longer than those of OPC(Ordinary Portland Cement).

  • PDF

Experimental Study on High Strength and high Flowable Concrete Filled Steel Tube for Practical Construction Application (합성강관 충전용 고강도-초유동 콘크리트의 현장적용을 위한 실험적 연구)

  • 윤영수;이승훈;성상래;백승준
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.151-161
    • /
    • 1996
  • This paper presents a series of tests to produce the h~gh quality concrete to be filled Inside the steel tube columns. Thls concrete filled steel tube system requires not only the high strength, but a150 the flowable concrete. Laboratory test has been performed to clarlfy the material characteristics and to produce the optlmal mix design proportion. Full scale site mock up test has been then carried out to slnlulate the actual construct~on conditions including the product~on of concrete at the rermcon batch plant, transportation to the construction site, proper workabil~ ty and man power required , 4ddit1onal mock up test has finally been performec to irivesti gate any unfavorable construction s~tuatioils since the actual concrete placement has been sched uled in cold weather period, so that the high quality concrete construction is convinced to be successfully carried out.