• Title/Summary/Keyword: Cold water region

Search Result 152, Processing Time 0.03 seconds

North Pacific Intermediate Water in the Northwest Pacific (북서태평양에서의 북태평양중층수)

  • 양성기
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.229-239
    • /
    • 1994
  • By laying emphasis on the intermediate layer, water property distribution in the Northwest Pacific is studied using the hydrographic data obtained by Japan Meteorologica] Agency in the period from 1960 to 1986. The scattering of water type in T-S diagram is relatively small in the Kuroshio Region. Both the envelopes of saline side and of fresh side of the scattered data points shifts gradually from saline side to fresh side as the observation line moves from southwest to northeast. In the Mixed Water Region, the scattering of water type increases rapidly as the observation line moves north; The envelope of fresh cold side moves towards fresh cold side much faster than that of same side. The thermosteric anomaly value at the salinity minimum decreases as the observation line moves from north to south or southwest. This suggests that the water does not advect along the salinity minimum layer, but that the salinity minimun layer is understood as a boundary of two different waters aligned vertically. We defined the typical water masses for the Oyashio Water and the Kuroshio Water. The water mass below the salinity minimum layer may be created by isopycnal mixing of these two water masses with a fixed mixing rate. While, the water mass above the salinity minimum cannot be created simply by isopycnal mixing. The salinity minimum layer may be eroded from upper side due to active mixing processes in the surface layer, while the water of the salinity minimum layer moves gradually southward. This appears to give an explanation why the thermosteric anomaly value at salinity minimum decreases towards south.

  • PDF

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

Characteristics of Ocean Environment Before and After Coastal Upwelling in the Southeastern Part of Korean Peninsula Using an In-situ and Multi-Satellite Data (다중위성 및 현장관측을 이용한 동해남부 연안용승 발생 전후의 해양환경 특성)

  • Kim, Sang-Woo;Go, Woo-Jin;Kim, Seong-Soo;Jeong, Hee-Dong;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • The objective of this paper is to explore the short-term variability of water temperature and chlorophyll a (Chl-a) derived from in-situ and satellite data (NOAA, Sea WiFS and QuikScat) in the upwelling region of the southeastern part of Korean Peninsula in June and August, 2007. Particularly we focused on the spatial variability of sea surface temperature(SST) and Chl-a in the East Korean Warm Current region. In the results of the in-situ data, the peaks of Chl-a in june was shown at a depth of 50m The peaks of Chl-a in August was shown at a depth of 10m at the stations 4 and 5 near the land, and a depth of 30m at the other stations. The Chl-a concentrations in August were also lower than those in june except for station 5. As a result, the peaks of Chl-a in August occurred at a depth of 20~40 m shallower than those of Chl-a in june. This indicates that the nutrient-rich water within the mixed layer depth may be immediately supplied by the coastal upwelling, which is due to the southerly component of wind. The relationship between SST and Chl-a showed a negative correlation, and the high concentration of Chl-a occurred in the cold water area. The southerly wind and the East Korean Warm Current influenced a remarkable offshore movement of the cold water and Chl-a near the coastal area.

Eddy-Resolving Simulations for the Asian Marginal Seas and Kuroshio Using Nonlinear Terrain-Following Coordinate Model

  • Song, Y.-Tony;Tang, Tao
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.169-177
    • /
    • 2002
  • An eddy-resolving free-surface primitive-equation model with nonlinear terrain-following coordinates is established to study the exchange of water masses among the Asian marginal seas and their adjacent waters. A curvilinear coordinate system is used to generate the horizontal grid with a variable resolution for the regional oceans from $5^{\circ}$S to $45^{\circ}$N and $100^{\circ}$E to $155^{\circ}$E. The higher resolution region has about a 10 km by 10 km grid covering the complex geometry of the coastal marginal seas, while the lower resolution region has about a 30 km by 30 km grid covering the eastern Pacific. The model is initialized by the Levitus annual climitology and forced by the monthly mean air-sea fluxes of momentum, heat, and freshwater derived from the Comprehensive Ocean-Atmosphere Data Set. High-resolution and low-viscosity are identified as the key factors for a better representation of the exchange of waters through narrow straits and passages between the marginal seas and their adjacent waters. The dynamics of the loop currents and eddies in the South China Sea and Celebes Sea are examined in detail. It has found that the anticyclonic loop and detached eddies from the Kuroshio through the Luzon Strait play an important role in transporting warm and salty water into the South China Sea, while the cyclonic circulation of the Mindanao Current in the Celebes Sea plays a role in contributing cold water to the Indonesian throughflow. The deep undercurrent of the western Pacific is shown to provide fresher water to the South China Sea and Celebes Sea. These modeling results suggest that the exchange processes via the narrow straits and passages are of fundamental importance to the maintenance of water masses for the marginal sea region.

Estimation of Sea Surface Current Vector based on Satellite Ocean Color Image around the Korean Marginal Sea

  • Kim, Eung;Ro, Young-Jae;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.816-819
    • /
    • 2006
  • One of the most difficult parameters to measure in the sea is current speed and direction. Recently, efforts are being made to estimate the ocean current vectors by utilizing sequential satellite imageries. In this study, we attempted to estimated sea surface current vector (sscv) by using satellite ocean color imageries of SeaWifs around the Korean Peninsula. This ocean color image data has 1-day sampling interval and spatial resolution of 1x1 km. Maximum cross-correlation method is employed which is aimed to detect similar patterns between sequential images. The estimated current vectors are compared to the surface geostrophic current vectors obtained from altimeter of sea level height data. In utilizing the color imagery data, some limitations and drawbacks exist so that in warm water region where phytoplankton concentration is relatively lower than in cold water region, estimation of sscv is poor and unreliable. On the other hand, two current vector fields agree reasonably well in the Korean South Sea region where high concentration of chlorophyll-a and weak tide is observed. In the future, with ocean color images of shorter sampling interval by COMS satellite, the algorithm and methodology developed in the study would be useful in providing the information for the ocean current around Korean Peninsula.

  • PDF

A Relationship between the Sea Level Variations in the Korea Strait and the Tokara Strait in the Kuroshio region

  • Hong Chul-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.113-121
    • /
    • 1998
  • A relationship between sea level variations in the Korea Strait (the western and the eastern channels) and the Tokara Strait in the Kuroshio region is examined using daily-mean sea level data from 1966 to 1986. The seasonal variation of the sea level difference (SLD) between Izuhara and Pusan (the western channel) is most periodic: the positive anomalies appear from summer to autumn, and the negative anomalies from winter to spring year to year, whereas SLDs neither between Hakata and Izuhara (the eastern channel) nor between Naze and Nishinoomote (the Tokara Strait) show such a periodic variation. Much similarity has been found between SLDs in the eastern channel and the Tokara Strait, and in particular they were closely correlated in a special event of the Kuroshio region, such as a large meander of the Kuroshio. This paper shows that the periodic seasonal variation of the SLDs in the western channel should be less related to the Kuroshio region. This result also implies that the variation of SLD in the western channel is largely influenced by local factors, such as the bottom cold water in the western channel in summer, rather than from the Kuroshio region.

  • PDF

Review of Oceanography of the Subarctic North Pacific Ocean (북태평양어장의 해양환경)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.9-27
    • /
    • 1971
  • Oceanography of the Subarctic North Pacific Ocean is reviewed. The submarine topography and the current systems in the region are explained. Recent serial observation data reveals that. though the upper mixed layer of low salinity is relatively thick. the pattern of the property distribution in winter is essencially similar to that in summer. Alaskan Stream Extension Water. which influences the abundance and the location of demersal fishes. extends northward to 58${\circ}$ N Lat in the Bering Sea. A southeastward intrusion of the Bering Borcal Cold Water causes the formation of a sharp oceanic front. where the demersal fishes such as Alaska pollacks and cods arc concentrated. The Alaska pollacks seem to avoid the low salinity water of the Alaskan Coastal Water.

  • PDF

Review of Oceanography of the Subarctic North Pacific Ocean (북태평양어장의 해양환경)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.8-8
    • /
    • 1971
  • Oceanography of the Subarctic North Pacific Ocean is reviewed. The submarine topography and the current systems in the region are explained. Recent serial observation data reveals that. though the upper mixed layer of low salinity is relatively thick. the pattern of the property distribution in winter is essencially similar to that in summer. Alaskan Stream Extension Water. which influences the abundance and the location of demersal fishes. extends northward to 58${\circ}$ N Lat in the Bering Sea. A southeastward intrusion of the Bering Borcal Cold Water causes the formation of a sharp oceanic front. where the demersal fishes such as Alaska pollacks and cods arc concentrated. The Alaska pollacks seem to avoid the low salinity water of the Alaskan Coastal Water.

A Two-layer Model for the Effect of Cold Water Formation on the East Korean Warm Current (냉수형성이 동한난류에 미치는 영향에 대한 2층 모델)

  • SEUNG Young-Ho;NAM Soo-Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • It is believed that the lower cold water is formed by winter cooling in the north of the East(Japan) Sea. To examine its effect on the general circulation of the East Sea, we performed a two-layer numerical model with realistic bottom topography. First a circulation is generated by imposing only an inflow and an outflow which is then modified by adding the cooling effect in the north. The interface between the two layers rises due to cooling and propagates along the coast as internal Kelvin waves. About 7 months after the cooling starts, all coastal areas of the basin have higher elevation than that in offshore region. This induces baroclinic currents resulting in clockwise(anticlockwise) circulation in upper (lower) layer of the basin. It is concluded that the East Korean Warm Current strengthens as a result of lower cold water formation.

  • PDF

A Study on the Characteristics of Perceived Temperature over the Korean Peninsula During 2007 Summer (한반도 2007년 여름철 인지온도 특성 연구)

  • Byon, Jae-Young;Kim, Jeong-Sik;Kim, Ji-Young;Choi, Byoung-Cheol;Choi, Young-Jean;Graetz, Angelika
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2008
  • This study examines one thermal index, perceived temperature (PT), over the Korean Peninsula during 2007 summer. Heat/cold stress has been described using air temperature and humidity for warm seasons and air temperature and wind velocity in the cold conditions, while PT is based on a heat budget model of the human body that considers air temperature, humidity, wind velocity and radiation effect regardless of climates, regions and seasons. PT is higher about $4-5^{\circ}C$ than air temperature in the summer. Humidity increases PT, while wind tends to reduces PT possibly by evaporation of water vapor. The geographical distribution of summer PT indicates that the lowest PT happened in the east central region, with the appearance of the highest PT in the inland of southern region in Korea. Although the latitudinal trend shows that PT decreases northward, inland PT is higher than that of coastal region. Compared to the heat index or the discomfort index that considers air temperature and humidity, PT represents distinctive regional characteristics of thermal comfort. The distribution of PT shows that it may be a useful thermal index for the assessment of thermal comfort or stress region in the Korean Peninsula.