• Title/Summary/Keyword: Cold upsetting

Search Result 42, Processing Time 0.02 seconds

Study on the Deformation of Die and Product in Closed Die Upsetting (밀폐 업셋팅에서 금형과 제품 변형에 관한 연구)

  • 이강희;박용복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.563-568
    • /
    • 1999
  • The study has been performed for the relation between die and product in closed die upsetting by the experiment. The strain of die has been given by the simple experiment using the strain gauge located at the outer surface of die and the deformation history of die and product has been given by the experiment and Lame's formula. The inner pressure of die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been usually predicted by the experience of industrial engineers or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful result for the deformation history of die and product through the experiment and Lame's formula at closed die upsetting, and can be applied in the die design for product with accurate dimension.

  • PDF

Study on the Deformation of Die and Product in Closed Die Upsetting (밀폐 업셋팅에서 금형과 제품 변형에 관한연구)

  • 박용복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.94-97
    • /
    • 1999
  • The study has been performed for the relation between die and product in closed die upsetting by the experiment. the strain of die has been given by the simple experiment using the strain gauge located at the outer surface of die and the deformation history of die and product has been given by the experiment and Lame's formula. the product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been given by the experiment and lame's formula. The product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been usually predicted by the experience of industrial engineers of finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful result for the deformation history of die and product through the experiment and Lame's formula at closed die upsetting and can be applied in the die design for product with accurate dimension.

  • PDF

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The mechanisms of wear are consisted of adhesion, abrasion, erosion and so on. Die wear affects the tolerances of formed parts, metal flow, and costs of process. The only way to control these failures is to develop a prediction method on die wear suitable in the design state in order to optimize the process. The wear system is used to analyse 'operating variables' and 'system structure'. In this study, with AISI D2, AISI 1020, AISI 304SS materials, a series of the wear experiments of pin-on-disk type to obtain the wear coefficients from Archard's wear model and the upsetting processes are carried out to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes are performed by the rigid-plastic finite element method. The result of the analysis is used to investigate the die wear the processes, and the analysis simulated die wear profiles are compared with the experimental measured die wear profiles.

  • PDF

FE TECHNIQUES TO IMPROVE PREDICTION ACCURACY OF DIMENSION FOR COLD FORGED PART

  • Lee Y.S.;Lee J.H.;Kwon Y.N.;Ishikawa T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.26-30
    • /
    • 2003
  • Since the dimension of cold forged part is larger than the cavity size of forging die, the difference results from the various features, such as, the elastic characteristics of die and workpiece, thermal influences, and machine-elasticity. All of these factors should be considered to get more accurate prediction of the dimension of forged part. In this paper, severe FE techniques are proposed to improve the prediction accuracy of dimension for cold forged part. To validate the importance of the above mentioned factors, and the estimated results are compared with the experimental results. The used model is a closed die upsetting of cylindrical billet. The calculated dimensions are well coincided with .the measured values based on the proposed techniques. The proposed techniques have put two simple but important points into Fe simulation. One is the separation of forging stages into 3 steps, from a loading through punch retraction to ejecting stage. The other is the dimensional change, according to the temperature changes due to the deformation. The FE analysis could predict the dimension of cold forged part within the $10{\mu}m$, based on the more realistic consideration.

  • PDF

An Analysis of the Forming Processes of a Flange (플랜지의 공정 해석)

  • Jang Yong-Suk;Hwang Beong-Bok
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.20-23
    • /
    • 1999
  • The current three-stage cold extrusion process including upsetting to produce a flange is investigated for the purpose of improvement of manufacturing process. The main goal of this study is to obtain an appropriate process sequence which can produce the required part most economically without overloading of tools and select an appropriate process for reducing manufacturing cost. The current process sequence is simulated and design criteria are examined. Based on the results of simulation of the current three-stage process, a design strategy for improving the process sequence is developed using the thick-wall pipes. Based on the results of simulation of the one-stage processes, the forming processes of a flange for improving the conventional process are proposed.

  • PDF

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to obtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

Design of a Impeller Hub Cold Forging Process (토크 컨버터용 임펠러 허브의 냉간단조공정설계)

  • Kim, Young-Suk;Kim, Hyun-Soo;Kim, Chan-Il;Choi, Suk-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.213-219
    • /
    • 2000
  • A impeller hub is usually made through three forging processes : forward extrustion, upsetting and finishing. The finishing process is closed die forging in which the load increases abruptly at the final stage, resulting in underfilling in the finished product due to insufficient load capacity of the press. In this study, the rigid-plastic finite element analysis was applied to the impeller hub forging process in order to optimize process and to estimate required load. As a result, two kind of improvements for the process were suggested to reduce the load requirement in the finishing process.

  • PDF

Comparision between Forward Extrusion and Upsetting Process for Preform with Stepped Shape (단 달림 형상의 예비성형체 성형에 대한 전방압출과 업셋팅 공정의 비교)

  • Song D. H.;Park Y. B.;Kim M. E.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.82-85
    • /
    • 2000
  • In cold forging, the final product is usually given by multi-stage process and the preform with stepped shape can be manufactured through the various forging method. The forward extrusion and upsetting processes for preform with stepped shape have been analyzed by using the rigid-plastic finite element analysis code, InteFORM and compared for load and stroke according to ae reduction of weを An engineer should select the proper processes considering the capacity and the stroke of the corresponding press in the forging of the preform with stepped shape.

  • PDF

Study on the cold pressure welding by upsetting (업셋팅 을 이용한 냉간압접 에 대한 연구)

  • 안기원;김재도
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • The mechanical properties and bonding mechanism of aluminum, copper and mild steel have been determined in cold pressure welding. The brittle cover layer to be established by scratch-brushing plays an important role in bond strength and has an influence on the threshold of deformation. The cold pressure welding was achieved at 54% of height reduction in A1-A1, 75% in Cu-Cu, 56% in Al-Cu, and 74% in Cu-steel. The height reduction at which the bond strength of weld interface was the same as the tensile strength of base metal should be over 76% in Al-Al, 82% in Cu-Cu, and 78% in Al-Cu.

  • PDF

Design of the Cold Forging Process for the Outer Race of BJ Type Constant Velocity Joint using Plasticine (플라스티신을 이용한 BJ형 등속죠인트 외륜의 냉간단조공정설계)

  • 이정환;이영선;박종진
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.282-290
    • /
    • 1994
  • The outer race of BJ type C.V.Joint has a complicated shape and ball grooves. It is produced by cold or warm precision forging. Especially, the precision level of the ball grooves determines the quality of the part. The objective of the present study is to develop process conditions of the cold forging using the plasticine. Because the cold forging consists of forward extrusion, upsetting, backward extrusion and cold sizing, the study was focused on finding the best perform for each process. The data obtained from the study will be used in the design of the cold forging process for the outer race.

  • PDF