• Title/Summary/Keyword: Cold sizing

Search Result 28, Processing Time 0.022 seconds

Development of a Computer Program for Thermal Sizing of a Copper Bonded Steam Generator (구리밀봉 증기발생기의 열적크기 계산을 위한 프로그램 개발)

  • 김의광;김연식;어재혁;김성오;백병준
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.84-92
    • /
    • 2003
  • A one-dimensional thermal-hydraulic analysis computer program is developed for thermal sizing of a copper bonded steam generator. It is assumed that the conduction heat transfer of copper region between the hot side and the cold side tube is one-dimensional and its thermal resistance is derived as a function of a tube pitch. The flow regions of the water/steam side are divided into four regions: subcooled, saturated, film boiling, and super-heated. The number of tube selected ranges from 250 to 3500 and the pitch to tube diameter (P/D) ratios are 1.4, 1.6 and 1.8 for the parametric study calculation. The calculation results showed that when the number of tube was 2500, the length of the heating tube was about 12 m and the outside diameter of the steam generator was about 3 m. If the P/D ratio increases, the thermal resistance of copper component also increases, however the length of the heating tube is not so much increased.

A Study on Net-shape Technology of Automotive Lock-up Hub using Cold Back Pressure Forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.;Ishikawa, T.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2008
  • Net shape forging technologies give many effects into the costs and qualities for the finished products. So, the studies to reduce the additional machining amount are very important in forging industry. Specially, there are two main topics in cold forging industry, such as, tool life and precision forging. In this study, new forging technique was proposed to eliminate the machining process for fixing up the length and improve the lead accuracy of gear. The luck-up hub is manufactured through many processes, such as upsetting, piercing and direct extrusion. The gear is formed in direct extrusion process; however, lead accuracy of the gear is over allowance limit. Therefore, the additional sizing process must be added. In this study, process design for closed-die forging of a lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

A Study on the Improvement of Machinability in Hot-Forged Aluminum Alloy Product(Al 7075) (알루미늄 합금(Al 7075) 절삭성 향상을 위한 열간단조 후처리 방법에 관한 연구)

  • 김진복;임학진;강범수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.46-53
    • /
    • 2000
  • Hot forging of aluminum alloy has the bad machinability due to continuous chip formation caused from the ductility The bad machinability requires a labor and a high cost to produce final products after hot forging. In industrial field, T4 heat treatment is performed to improve the machinability, and the annealing and the cold sizing are followed. In this study, a series of heat treatments are introduced during hot forging operation without T4 heat treatment after forming so that it improves the machinability with reduction of the number of operations and machining cost. Instead of T4 heat treatment, water cooling and air cooling are tried and compared to find out an optimum cooling condition

  • PDF

A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System (SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Flow Distributions in the Channel of Plate Heat Exchanger Applied in Vacuum Evaporating Distiller System

  • Jin, Zhen-Hua;Park, Gi-Tae;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.389-394
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present work, PHE is applied in the fresh water generator system. Fresh water generators or desalinators are installed in ship to convert seawater to fresh water using heat from engines. PHE is an important part of a condensing or evaporating system. Among many of factors which should be concentrated on, the heat transfer and pressure drop is most important parts during sizing and rating the performance of PHE. Flow maldistribution is common but it will significantly reduce the heat exchanger performance. In this paper provide a overview of PHE cover basic of theory and conduct a numerical approach for flow distribution in plate channel. An experimental study on the performance of fresh water generator system which developed by plate heat exchanger will presented in future research. Thus, extensive experiment and analysis is required to study the thermal and fluid flow characteristics of PHE.

  • PDF

A study on Net-shape technology of Automotive Lock-up Hub using Cold back pressure forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.173-176
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. This study proposes a new method for manufacturing of high manufacturing productivity, production process reduction and low cost through back pressure forming. The Lock-up hub is manufactured through many processes, such as upsetting($1^{st}$ Forming), piercing, direct extrusion($2^{nd}$ Forming), final sizing process($3^{rd}$ Forming). In this study, process design for closed-die forging of a Lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of Lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

  • PDF

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G.;Rajasekaran, S.;Selvakumar, J.;Kaushik, Chetan P.;Gayen, J.K.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.746-754
    • /
    • 2019
  • Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.

Optimization Design of Solar Water Heating System based on Economic Evaluation Criterion using a Genetic Algorithm (유전알고리즘 이용 경제적 평가기준에 따른 태양열급탕시스템 최적화 설계에 관한 연구)

  • Choi, Doosung;Ko, Myeongjin;Park, Kwang-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.73-89
    • /
    • 2016
  • To assure maximum economic benefits and the energy performance of solar water heating systems, the proper sizing of components and operating conditions need to be optimized. In recent years, a number of studies to design optimally solar water heating systems have been tried. This paper presents a design method for optimizing the various capacity-related and installation-related design variables based on life cycle cost using a genetic algorithm. The design variables considered in this study included the types and numbers of solar collector and auxiliary heaters; the types of storage tanks and heat exchangers; the solar collector slope; mass flow rates of the fluid on the hot and cold sides. The suggested method was applied for optimizing a solar water heating system for an elementary school in Seoul, South Korea. In addition, the effectiveness of the proposed optimization method was assessed by analyzing the obtained optimal solutions of six case studies, each of which was simulated with different solar fractions. It is observed that a trade-off between the equipment cost and the energy cost results in an optimal design that yields the lowest life cycle cost. Therefore, it could be helpful to apply the optimal solar water heating system by comparing the various design solutions obtained by using the optimization method instead of the engineer's experience and intuition.