• Title/Summary/Keyword: Cold modules

Search Result 48, Processing Time 0.025 seconds

Development on the Automated Process System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계 시스템 개발)

  • 이봉규;조해용;권혁홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.527-530
    • /
    • 1997
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for th system are extracted from the plasticity theories. handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts are needed both front view and plane. At the plane, this system cognizes the external shape of non-axisymmetric parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and hight of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

  • PDF

A Study on the Computer aided Design of Multi-Stage Cold Forging Die for Rotationally Symmetric Parts. (축대칭 다단 냉간단조 금형설계에 관한 연구)

  • Choi, Jae-Chan;Kim, Seong-Weon;Cho, Hea-Yong;Kim, Hyung-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.95-104
    • /
    • 1990
  • This paper descirbes some research of Computer-aided Design of multi-stage cold forging die of rotationally symmetric parts produced by the press or former. An approach to the system is based on knowledge based system. Knowledges for tool design are extracted from the plasticity theory, handbooks, relevent references and empirical know-how of experts in cold forging companies. The deveoped system is composed of three main modules such as die design module, punch design module, tool elements design module which are sued independently or in all. Using this system, design parameters (types of dies, geometric shapes and dimensions of dies, types of punches, geometric shapes and dimensions of punches, geometric shapes and dimensions of tool elements) in each operation are determined and the output is generated in graphic form. The develpoed system, aids designer, provides powerful capability for designing dies, punches and tool elements.

  • PDF

Research of shape optimization for High-Efficiency Electronic cold modules taking into consideration thickness and thermoelectric element mounting position (두께와 열전소자 부착위치를 고려한 자동차용 고효율 전자 냉온 모듈 형상 최적화 연구)

  • Kim, Jae-Won;Lee, Jung-Ho;Park, Chan-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8350-8356
    • /
    • 2015
  • The demand for user convenient devices in automotive applications are fast growing, mainly driven by the customer's requirement for higher efficiency and more features. In important such feature is the cold module for cars, which are convenient luxuries that warm or cool drinks placed in the cup holder by means of a thermoelectric element. In present study, we would like to find out the optimal thickness of the cup holder and mounting position of the thermoelectric element through experiments under various testing conditions and thermal analysis. The resulting thermal distribution of the primary area of thermal analysis was found to be lowest when the thickness was 2.5 mm. The temperature distribution was also lowest when the thermal element was positioned underneath the holder (A-type).

Study on the Cooling Performance of Single and Cascade Refrigeration Systems Using Thermoelectric Modules (열전소자를 이용한 싱글 및 캐스케이드 냉동시스템의 냉각 성능에 관한 연구)

  • Lim, Changhak;Kim, Dongwoo;Kim, Yongchan;Seo, Kookjeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.641-646
    • /
    • 2013
  • The purpose of this study is to improve the cooling performance of single and cascade refrigeration systems using thermoelectric modules. The system consists of a heat sink, fan, and thermoelectric module. The operating parameters considered in this study include power distribution between the first- and second-stage thermoelectric modules, air flow, and variable condensing unit. The cooling capacity increased with decreases in the temperature difference between hot and cold surfaces, but decreased with increases in the condensing temperature. The COP decreased with increasing electric power of the thermoelectric module because of the increased Joule heat. The cooling performance improvement using the thermoelectric module is represented by the freezer temperature.

Development of an Automated Process Planning System for Manufacturing Wheel Bolt (휠볼트 제작을 위한 공정설계 자동화 시스템 개발)

  • 박성관;박종옥;이준호;정성윤;김문생
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.983-987
    • /
    • 2001
  • This paper deals with an automated computer-aided process planning system by which designer can determine operation sequences even if they have little experience in process planning of wheel bolt products by a multi-stage former. The approach to the system is based on knowledge-based rules and a process knowledge base consisting of design rules is built. Knowledge for the system is formulated from plasticity theories, empirical results and the empirical knowledge of field experts. Programs for the system have been written in AutoLISP for the AutoCAD using a personal computer and are composed of two main modules. An attempt is made to link programs incorporationg a number of expert design rules to form a useful package. Results obtained using the modules enable the designer and manufacturer of wheel bolt product to be more efficient in this field.

  • PDF

A Development of CAD Program for Forging Die Design of Gear Components (기어류 부품의 단조 금형설계용 CAD 프로그램 개발)

  • 최종웅;조해용;최재찬;조창용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.21-31
    • /
    • 1998
  • This study described computer aided die design system for cold forging of non-axisymmetric parts. To design the die of cold forging. an integrated approach based on a rule-base system and commercial F. E. code were adopted. This system is implemented on the personal computer and its environment is a commercial CAD package named as AutoCAD. The system includes four modules. In the initial data input module, the variables which are necessary to design of die are inputted by user and die material are selected from the database. In the analysis and redesign module, stress distrubution action on the designed die is analyzed by commercial FEM code NISA II. The designed die is modified to prevent failure in both states of stress free and pressurizing. The developed system provides powerful capabilities for die design of non-axisymmetric parts.

  • PDF

An Integrated Process Planning System and Finite Element Simulation for Multistage Cold Forging (유한요소해석을 통합한 다단 냉간단조 공정설계시스템)

  • 최재찬;김병민;이언호
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 1995
  • An integrated process planning system can determine desirable operation sequences even if they have little experience in the design of multistage cold forging process. This system is composed of seven major modules such as input module, pre-design module, formability check module, forming sequence design module, forming analysis module, FEM verification module, and output module which are used independently or in all. The forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics(diameter, height, and radius), the part geometry is expressed by a list of the primitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the dimensional tolerances and the proper sequence of operations for parts, is generated under the environment of AutoCAD. Several forming sequences generated by the planning system can be checked by the forming analysis module. The acceptable forming sequences can be verified further, using FE simulation.

  • PDF

A Study on the Automated Process Planning System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계시스템에 관한 연구)

  • Lee, Bong-Gyu;Jo, Hae-Yong;Gwon, Hyeok-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.195-202
    • /
    • 2002
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for the system are extracted from the plasticity theories, handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts need front and plane view. At the plane, this system cognizes the external shape of non-axisymmetric, parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and height of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

Development of Expert System for Cold Forging of Axisymmetric Product - Horizontal Split and Optimal Design of Multi-former Die Set - (준축대칭 제품 냉간단조용 전문가시스템 개발 - 다단포머 금형의 수평분할 밀 최적설계 -)

  • Park, Chul-Woo;Cho, Chun-Soo;Kim, Chul;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.32-40
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and the die design modules consider several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.

A Study on the Thermal Design of the Active Antenna System (능동형 안테나 시스템의 방열설계에 관한 연구)

  • Joung, Yong-In;Kwon, Min-Sang;Ryu, Jun-Suk;Park, Dong-Myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.687-693
    • /
    • 2018
  • In this paper, we studied on the thermal design of the active antenna system for stable performance considering thermal reliability. The active antenna has high performance and heat flux elements in T/R modules. Thermal heating of elements in T/R modules has to be dissipated effectively and the antenna has to be operated over the range of suggested temperature by the thermal design. T/R modules of high heat flux in the active antenna can be dissipated effectively by liquid cooling. In this study, we studied on the thermal design including the liquid cooling system to optimize the thermal performance of the active antenna. And the thermal design was verified by numerical analysis.