• Title/Summary/Keyword: Cold flow model

Search Result 239, Processing Time 0.023 seconds

Design of Cold-flow Test Equipment Considering Dynamic Similarity for DACS Verification (동적상사를 고려한 DACS 검증용 공압 시험장치 설계)

  • Bae, Sangho;Chang, Hongbeen;Park, Iksoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.374-377
    • /
    • 2017
  • A cold-flow test equipment was designed to carry out the performance verification of TDACS. For that purpose, the pressure dynamics in the solid rocket motor combustor and the cold-flow test was modeled, and the response time showing the dynamic characteristics of each model was obtained. In this paper, the system response time of the cold-flow test was designed to be equal to that of the motor, making the dynamic response in cold-flow and hot gas condition to be similar.

  • PDF

Optimal Design of Blowing Plates to Minimize the Freezing Phenomena in the Freezer of a Side-by-side Refrigerator (양문 여닫이형 냉장고 냉동실 결빙 최소화를 위한 토출구형상 최적설계)

  • Kwak, S.M.;Lee, Y.H.;Kum, J.S.;Kim, N.S.;Kim, S.B.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.17-22
    • /
    • 2003
  • As side-by-side refrigerators came into existence, there has been a growing concern about the free%ins-up of the vital equipment in a walk-in freezer. Due to a bad performance, customers are experiencing too much frustration. In order to minimize the freezing phenomena, the numerical simulation has been performed on the characteristics of cold air flow in a side-by-side refrigerator. The flow field has been simulated with a standard $k-\varepsilon$ turbulent model and a SIMPLE algorithm based on the finite volume method. Through the results of the analysis of the pattern of cold air flow, finally the shape of outlet for cold air flow was modified. The present model was compared with the modified model. The latter was better than the former in minimizing the freezing phenomena.

  • PDF

Numerical Analysis on the Flow Pattern in the Melt of Cold Model for the Czochralski system

  • Kim, Min-Cheol;Lee, Sang-Ho;Yi, Kyung-Woo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.113-116
    • /
    • 1998
  • A numerical study was performed on the fluid flow in the melt of the cold model for Czochralski growth system. The fluid flow in the melt of Woods metal with crucible diameter of 20cm was calculated using a three dimensional finite difference method. Since the crucible size is large, fully turbulent model as well as laminar model was used in the calculation. The effects of crucible rotation rate, crystal rotation rate and wall temperature difference on the velocity and temperature distribution were also investigated. For the purpose of verifying the results of calculation, a cold model experiment using Woods metal was also conducted and the velocity distribution in the melt of the model was measured.

  • PDF

3-Dimensional Calculation on Cold Air Flow Characteristics in a Refrigerator (냉장고 내부의 냉기 유동특성에 관한 3차원 해석(I))

  • Oh, Min-Jung;Lee, Jae-Heon;Oh, Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.382-395
    • /
    • 1995
  • A numerical study has been performed on flow characteristics in a domestic refrigerator whose size is $540mm{\times}1,530mm{\times}680mm$, considering existence of a fan and evaporator. The flow field has been simulated with the low Reynolds number $k-\bar{\varepsilon}$ turbulent model and SIMPLE algorithm based on the finite volume method. The region of fan which makes driving force for cold air distribution was modeled as a region in which momentum sources are generated uniformly. The concept of the distributed pressure resistance was applied to describe the momentum loss from evaporator. The result showed that the rate of cold air distribution into freezing room and cold storage room was almost 7 : 3.

  • PDF

Study for a Secondary Air Affecting Fluid Flow in a Solid Waste Incinerator (쓰레기 소각로의 2차공기가 유동현상에 미치는 현상 연구)

  • Lee, Geum-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2924-2932
    • /
    • 1996
  • As the environmental pollution can be greatly reduced and the waste heat can be also recovered through a combustion of municipal solid waste, the incineration begins to be highlighted recently in our country. But it is very difficult to be operated with constant combustion conditions for a long time as the domestic waste is composed of various components, contains a large percentage of water, and has a low heating value. Therefore, the cold flow test and partial hot flow test were conducted in the incinerator by use of injection angles of a secondary air affecting fluid flow as the first action to maintain the optimum combustion conditions. A model to a scale of 1:10 was designed and manufactured through the similarity of model and prototype flows. Velocities and temperatures were measured through the experiment. From the results, fluid flows of secondary air obtained from partial hot flow test correspond almost well with those of main flow obtained from cold flow test. Consequently, injection angles of secondary air are proved to affect main flow decisively.

Numerical Study on Vortex Structures in a Two-dimensional Bluff-Body Burner in the Transitional Flow Regime

  • Kawahara, Hideo;Nishimura, Tatsuo
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • Vortical structures are investigated numerically for both cold and combusting flows from a two-dimensional bluff-body burner in the transitional flow regime from steady to unsteady state. The Reynolds number of the central fuel flow is varied from 10 to 230 at a fixed air Reynolds number of 400. The flame sheet model of infinite chemical reaction and unit Lewis number are assumed in the simulation. The temperature dependence of the viscosity and diffusivity of the gas mixture is also considered. The vortex shedding is observed depending on the fuel flow. For cold flow, four different types of vortical structure are identified. However, for combusting flow of methane-air system the vortical structures change significantly due to a large amount of heat release during the combustion process, in contract to cold flow.

  • PDF

Cold Flow and Ignition Tests for Technology Demonstration Model of 75-Tonf Thrust Chamber (75톤급 연소기 기술검증 시제 수류시험 및 점화시험)

  • Kim, Mun-Ki;Han, Yeoung-Min;Kim, Jong-Gyu;Ahn, Kyu-Bok;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.97-100
    • /
    • 2009
  • Cold flow and ignition tests were performed for a technology demonstration model of a 75-tonf thrust chamber which is a candidate liquid rocket engine for a next Korea Space Launch Vehicle. The test facility was modified to support the new concepts of the thrust chamber such as ignition system, film cooling and LOx leading supply. The hydrodynamic characteristics of the supply pipelines, thrust chamber and igniter as well as the filling time of the propellants were obtained through the cold flow tests on the LOx and kerosene and the ignition cyclogram was determined using the results. The ignition test was successfully accomplished according to the cyclogram and therefore, a basic information was obtained for further hot firing tests.

  • PDF

A study on the adaptive method of control model for tandem cold rolling mill (연속냉간압연기 제어모델의 적응수정방법에 관한 연구)

  • Lee, Won-Ho;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1030-1041
    • /
    • 1997
  • The control model in the tandem cold rolling mill consists of many mathematical theories and is used to calculate the reference values such as the roll gap and the rolling speed for good operation of rolling mill. But, the control model used presently has a problem causing inaccurate prediction of the rolling force. By the parameter identification, it was found that the main factor causing inaccurate prediction of the rolling force was incorrect modeling of the friction coefficient and the flow stress. To get rid of the erroneous factor new adaptive schemes are suggested in this work. Those are a long-time adaptation by the iterative least-square method and a short-time adaptation by the recursive weighted least-square method respectively. The new equations for the friction coefficient and the flow stress are derived by applying the suggested adaptive algorithms. Through the on-line test in an actual mill, it is proved that the rolling force predicted by the new equations is more accurate than the one by the existing equations ever used.

Effect of Topical Hypothermia on Myocardial Protection from Ischemia - Experimental study using isolated rat heart perfusion technique- (흰쥐의 적출된 작업성 심장에서 허혈성 심정지시 국소냉각법이 심근보호에 미치는 영향)

  • 최종범
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.231-239
    • /
    • 1988
  • Currently numerous methods are in use for myocardial hypothermia as a myocardial preservation modality for cardiac operation. During cardiac ischemia after crystalloid cardioplegia[4C GIK solution], topical cold saline[Group I, a=9], topical ice slush[Group II, n=9] and topical ice chip[Group III, a=10] have been compared for myocardial surface cooling in the isolated rat heart model of cardiopulmonary bypass. During postischemic period, hemodynamic functions[aortic flow, coronary flow, peak aortic pressure and heart rate], biochemical enzymatic activities and cellular injuries with electron microscope were evaluated in this isolated rat heart perfusion model. Postischemic aortic flow, cardiac output and peak aortic pressure in Group I and Group II recovered better than Group III.[p< 0.05] Postischemic creatine kinase and lactate dehydrogenase leakages in Group II and Group III increased more than Group l and postischemic mitochondrial swelling in Group III was more severe than Group I, and Group II.[p< 0.05] These results suggest that topical cold saline was the better method than topical ice slush or topical ice chip as a myocardial preservation modality in the isolated rat heart model of cardiopulmonary bypass.

  • PDF

Analysis of the upsetting type process for spur gear cold forging using 3D-FEM (3차원 유한요소법을 이용한 Upsetting Type Spur Gear 냉간 단조 공정 해석)

  • Chun S.H.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.135-138
    • /
    • 2004
  • Since the upsetting type is superior to an extrusion type to get the dimensional accuracy of cold forged spur gear, the upsetting type process far spur gear cold forging has been studied. FE analysis of upsetting type process fur spur gear cold forging was performed to investigate about flow pattern of workpiece and die stress. To analyze the elastic characteristics of die, both rigid and elastic material model were used during loading stage. Under-filled defects were detected In lower portions of spur gear forged by upsetting type in experimental. When the elastic material model for die was used, the under-filled defects could be predicted. On the other hand, if the material model of die was rigid, the defects could not been presented because the die deflection was not considered.

  • PDF