• Title/Summary/Keyword: Cold cathode fluorescent lamp

Search Result 93, Processing Time 0.022 seconds

A Study on the Characteristics of Circular Piezoelectric Transformer which has Crescent-shaped Input Type (Crescent-shaped Input Type 원형압전변압기의 특성 연구)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. The piezoelectric transformers operated in each transformer's resonance vibration mode. The electrodes and poling directions on commercially available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor $(k_p\;k_{15})$ becomes effective rather than the transverse mode coupling factor $(k_{31})$. ANSYS finite element code was used to analyze transformer behavior and to optimize electrode and poling configurations. The voltage step-up ratio of the proposed transformer has been markedly improved in comparison with that of the equivalent rectangular(Rosen) type. A single layer prototype transformer, $20\sim30mm$ in diameter and $1.0\sim3.5mm$ thick, was fabricated, such as step-up ratio, power transformation efficiency, and temperature were measured. While the transformer was driving a Cold Cathode Fluorescent Lamp(CCFL), the temperature field of the transformer was also observed.

Initial Photometric and Spectroscopic Characteristics of 55-inch CCFL and LED Backlights for LCD-TV Applications

  • Ko, Jae-Hyeon;Ryu, Jin-Sun;Yu, Mi-Yeon;Park, Seung-Mi;Kim, Su-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.8-13
    • /
    • 2010
  • For better picture quality in LCD TVs, it is important to reach a steady emitting state within as short a time as possible in the initial stage after the TV is turned on. The initial characteristics of LCD TVs are mainly determined by the properties of the backlight. In the present study, the photometric and spectroscopic properties of a 55-inch Cold Cathode Fluorescent Lamp (CCFL) and Light Emitting Diode (LED) backlights were investigated. The measured properties include time dependence of the spectrum, luminance, and color coordinates. The results show that the change in the spectroscopic properties of the LED backlight is smaller than that of the CCFL backlight. This indicates that the initial picture quality of the LCD TV with the LED backlight is superior to that with the CCFL backlight. The origins of this difference were discussed in relation to the inherent characteristics of the two light sources.

The Effect of Color Reproduction Properties at TFT-LCD Using High Color Reproduction CCFL (고색재현성 CCFL을 사용한 LCD에서의 색재현성 개선에 관한 평가)

  • Han, Jeong-Min;Bae, Kyung-Woon;Kim, Yun-Ho;Lim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.165-168
    • /
    • 2003
  • 최근 TV 대응 LCD 제품의 본격적인 양산과 더불어 LCD TV 의 색재현성에 대한 해결과제가 큰 문제로 대두되고 있으며, CRT 급 색재현성의 확보는 LCD TV 의 고급화를 위한 또 하나의 개발 방향이 되고 있다. 그러나, CF(Color Filter)만을 이용한 색재현성의 개선은 근본적으로 한계를 가지고 있으며, 패널 투과율의 저하로 이어져 또다시 고휘도 사양의 BL(Back Light)에 대한 요구가 발생하고 있다. 따라서 본 연구에서는 CF(Color Filter)만에 의한 색재현성의 개선이 아닌 BL 광원 자체의 스펙트럼 최적화를 통해서 CRT 급 색재현성의 확보를 통한 고부가가치 상품개발의 가능성을 제시하고자 하였다. 구체적으로, 램프형광체의 RED 와 Green-Blue 영역에서의 Intensity 향상을 통해서 기존의 CCFL(Cold Cathode Fluorescent Lamp)과는 다른 특성을 광원에 부가하여, 기본의 LCD 패널을 그대로 이용한 경우에도 색재현성을 약 11% 개선하였다.

  • PDF

Development of a LED BLU Tester Detecting the Errors of LCD Panels (LCD 패널의 불량을 검출하는 검사용 LED BLU 개발)

  • Kouh, Hoon-Joon;Jang, Kyung-Soo;Oh, Ju-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.62-69
    • /
    • 2010
  • LCD panel need BLU(Back Light Unit) that is outside source of light because can not emit light voluntarily. BLU is used in LCD module and is used in tester that examine LCD panel's badness. Lately, BLU had changed from CCFL(Cold Cathode Fluorescent Lamp) to LED(Light-Emitting Diode) fast. CCFL need extra-high tension power and produce much heat and is difficult to keep fixed brightness. LED is few electric power wastage and keeps fixed brightness. But, BLU that is used to detector that examine the LCD module is using CCFL until recently. This paper develops LED BLU that can examine LCD panel's badness. Also, this manufactures LED BLU to 24 inch size to examine all LCD panels(12~24 inch), and develops so that LED BLU may operate according to LCD panel's size.

Field Emission-Back Light Unit Fabricated Using Carbon Nanotube Emitter

  • Kim, H.S.;Lee, J.W.;Lee, S.K.;Lee, C.S.;Jung, K.W.;Lim, J.H.;Moon, J.W.;Hwang, M.I.;Kim, I.H.;Kim, Y.H.;Lee, B.G.;Choi, Y.C.;Seon, H.R.;Lee, S.J.;Park, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.277-280
    • /
    • 2007
  • Field emission-back light unit (FE-BLU) was fabricated using carbon nanotube (CNT) emitter. Local dimming and local brightening techniques were achieved, which results in very high contrast ratio. In addition, the motion blur phenomenon, one of the serious problems of liquid crystal display (LCD) with cold cathode fluorescent lamp (CCFL)-BLU, was removed from LCD-TV by using FE-BLU.

  • PDF

Output Power characteristics of the Piezoelectric Transformer for LCO Backlight with Piezoelectric and Piezoelectric Properties (유전 및 압전특성에 따른 LCD Backlight용 압전 트랜스포머의 출력전력특성)

  • 민석규;류주현;정회승;홍재일;윤현상;손은영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.852-856
    • /
    • 2000
  • In this paper, we investigated the output power, step-up ratio and efficiency properties of piezoelectric transformer with dielectric and piezoelectric characteristics of manufactured ceramics. The piezoelectric transformers with $2.0$\times$10$\times$48[$mm^3$] size were fabricated and its electrical properties were measured. When output power of 6W was constantly maintained, T2 piezoelectric transformer showed the minimum temperature rise of $9(^{\circ}C)$ at $150(K\Omega)$ load resistance. However, T1 piezoelecric transformer showed the temperature rise of $7.2(^{\circ}C)$ at $200(K\Omega)$ load resistance. The 6[w] CCFL (Cold Cathode Fluorescent Lamp) was successfully driven by T1 and T2 piezoelectric transformer but, its temperature rise $\Delta$T[$^{\circ}C)$] was generated more than $20(^{\circ}C)$. It is concluded that we have to design the piezoelectric transformers so that its output impedance correspond to the load impeadance, including any stray capacitance.

  • PDF

The Study of White uniformity improvement in TFT LCD using LED (LED적용 TFT-LCD 외관 백색 균일도 향상을 위한 광선 추적 시뮬레이션 연구)

  • Lee, San-Hwan;Yi, Jun-Sin;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1665-1666
    • /
    • 2006
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display)는 표시장치로서 실용화된 후 많은 상품에 적용중이다. 그러나, LCD는 자체 발광능력이 없으므로 그후면에서 LCD 화면을 밝혀주는 BLU(Backlight Unit)를 필요로 한다. BLU는 내부 광원으로 밝기가 균일한 평면광을 만들어 LCD 화면을 균일하게 면조사하는 역할을 한다. LCD가 적용되는 분야중 Note PC에는 광원으로 CCFL(Cold Cathode Fluorescent Lamp)가 적용되어 왔지만, 최근 고휘도, 박형화, 저소비 전력을 달성하기 위해 CCFL로는 한계가 있어 LED(Light Emitting Diode)를 적용한 BLU를 제작하기 위한 연구가 진행되고 있다. 본 연구에서는 점광원인 LED 적용한 LED에 있어서 요구되는 휘도 균일성을 향상시키기 위해서는 LED광원이 적용된 BLU의 외관 품질 향상을 위한 도광판 입광부 구조 최적화를 광추적 Simulation을 통해 예측하고 향상시킬 수 있는 구조를 제안한다. Simulation결과, 외관품질 개선을 위해 도광판 입광면에 130도의 Serration과 휘도를 향상하기 위해 도광판 밑면에 렌즈 형상의 바 구조를 도출해 적용한 결과 외관품질향상과 휘도향상을 얻었다.

  • PDF

Simple Digital LCD Backlight Inverter using a Single-chip Microcontroller (단일칩 마이크로컨트롤러를 이용한 간단한 디지털 LCD 백라이트 인버터)

  • Jeong, Gang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.461-468
    • /
    • 2010
  • This paper presents a simple digital LCD backlight inverter using a single-chip microcontroller. The proposed inverter reduces the ignition voltage and eliminates the current spikes and hence improves the ignition behavior of the cold cathode fluorescent lamp(CCFL). Thus it increases the CCFL's life span. This is achieved by implementing a digital dimming control algorithm, that contains the soft-starting algorithm, all on a single-chip microcontroller. The inverter utilizes the full-bridge resonant circuit topology. The design example along with a simple analysis for the inverter is shown, and the experimental results of the designed prototype results in close agreement with the theoretical analysis and explanation. The overall system's power efficiency is approximately 85%. Compared with conventional inverters, the ignition voltage is reduced by around 30% without any lamp current spike occurring during the dimming control operation.

The Characteristics of Piezoelectric Transformer for Driving CCFL (CCFL 구동용 압전 변압기의 특성)

  • Jeong, Su-Hyun;Lee, Jong-Sub;Hong, Jong-Kuk;Chae, Hong-In;Yoon, Man-Soon;Lim, Kee-Joe
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.259-264
    • /
    • 2000
  • In this paper, the characteristics of piezoelectric transformer is studied for driving CCFL(Cold Cathode Fluorescent Lamp). In order to investigate the effects of geometrical dimensions, λvibration-mode type piezoelectric transformers with different sizes in the length(l), width$(\omega)$ and thickness(t) are made of ceramics with PZT-PMWS compositions. The increases in temperature and aging effect are also measured in the transformer of PT-3 sample under the condition of operation continuously for 10 hrs. As the results of dimensional effects, the output power and voltage step-up ratio are largely affected by the ratio of length to thickness(l/t) rather than that of length to $width(l/\omega)$. The output power and step-up ratio are increased with increasing l/t. On case of PT-3, the output voltages are 510[Vrms] at 36[Vrms] in input voltage, $100[k\Omega]$ in load resistance. Temperature increases and variation of output voltages are $10[^{\circ}C]$ and less than 5[%], respectively.

  • PDF

Design of a PWM-Controlled Driving Device for Backlightsof LED Systems (LED 광원의 백 라이트에 대한 PWM 제어 및 구동 장치 설계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.245-251
    • /
    • 2015
  • In this paper, we present a design of PWM-controlled driving device for backlights in LED systems. The system can control either the brightness of the entire screen of backlights of LCD driven by LED or illumination or contrast of each partial segment of the entire screen. The PWM-controlled driving device includes the shift register that shifts the series data according to the clock signal prior to the generation of parallel data. It is also is comprised of a number of registers, a number of counters, a number of comparators, and a number of synchronizing gates (producing the PWM-controlled signals). The proposed device for backlights in LED systems can generate the PWM-controlled signal with a high degree of resolution without the increase of clock frequency. It also contains the PWM-controlled circuit that disperses and restrains the quantized noise.