• Title/Summary/Keyword: Cold cathode

Search Result 182, Processing Time 0.025 seconds

Characterization of the Hydrogen Reservoir for a High Power Gas Switch

  • Lee, B.J.;Park, S.S.;Kim, S.H.;Kwon, S.J.;Jang, S.D.;Joo, Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.261-261
    • /
    • 2012
  • This paper presents the understandings carried out for the installation of the hydrogen reservoir of the multi-gap pseudospark switch under developing for the accelerator applications. As a cold cold cathode switch, the pseudospark switch could replace the thyratron switch which has hot cathode and being used well currently in the high power field such as laser and accelerator applications. Especially in the klystron modulator, the key component is a switch which mostly defines the jitter and the instability of the modulator system. To get the less jitter and the instability, we need to find proper range of the pressure for the gas discharge inside gas switch. This could be achieved by the understanding of the characteristic of the nonevaporable getter (NEG) which is used as a hydrogen reservoir for the switch. Therefore we verified the characteristics of the NEG (St 172, Saes) and its installation in the switch. Finally we controlled the getter to find best pressure point for the pseudospark switch.

  • PDF

Current Technology Trends Analysis on the Recovery of Rare Earth Elements from Fluorescent Substance in the Cold Cathode Fluorescent Lamps of Waste Flat Panel Displays (폐디스플레이 CCFL에 존재하는 형광체 내 희토류 원소 회수 기술 동향 분석)

  • Kang, Leeseung;Shin, Dongyoon;Lee, Jieun;Ahn, Joong Woo;Hong, Hyun-Seon
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • Flat panel display devices are mainly used as information display devices in the 21st century. The worldwide waste flat panel displays are expected at 2-3 million units but most of them are land-filled for want of a proper recycling technology More specifically, rare earth metals of La and Eu are used as fluorescent materials of Cold Cathode Flourscent Lamp(CCFL)s in the waste flat panel displays and they are critically vulnerable and irreplaceable strategic mineral resources. At present, most of the waste CCFLs are disposed of by land-filling and incineration and proper recovery of 80-plus tons per annum of the rare earth fluorescent materials will significantly contribute to steady supply of them. A dearth of Korean domestic research results on recovery and recycling of rare earth elements in the CCFLs prompts to initiate this status report on overseas research trends and noteworthy research results in related fields.

Design and Application of CCFL Drive Inverter Transformer for LCD Backlight (LCD Backlight를 위한 CCFL 구동용 인버터 트랜스포머의 설계와 응용)

  • Cho, Sang-Ho;Han, Sang-Kyoo;Hong, Sung-Soo;SaKong, Sug-Chin;Kwon, Gi-Hyun;Lee, Hyo-Bum;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.96-102
    • /
    • 2008
  • In a large screen sized LCD-TV, a backlight system with only one cold cathode fluorescent lamp(CCFL) can not meet brightness specification. Thus, considerable numbers of CCFLs are used to meet brightness specification. In this paper, the design guide for the inverter transformer which can drive 4 CCFLs instantaneously is presented. With the presented design, the inverter transformer that guarantee identical lamp currents under the nonidentical lamp characteristic condition, can be implemented easily. The developed inverter transformer is adopted in a 42" LCD-TV backlight. The experimental results are presented to show the validity of the presented design guide.

The Effect of Color Reproduction Properties at TFT-LCD using High Color Reproduction CCFL

  • Han, Jeong-Min;Ok, Chul-Ho;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.215-217
    • /
    • 2007
  • Recently, color reproduction properties have attracted lots of attention with mass production of LCD especially corresponding to TV application and achievement of color reproduction properties such as CRT have been considered one of technical goals for high quality display. However, revision of the color reproduction properties only with CF(color filter) have fundamental limitations and resultant decrease in the transmittance of panel causes demand on high brightness of BL(Back Light). In this paper, we present such a method in which by optimization of original light spectrum from the BL source will improves the color reproduction properties corresponding to them of the CRT. When the intensity of RED and Green-Blue from ramp is revised densely, the characteristics different from CCFL(Cold Cathode Fluorescent Lamp) used before become added so that about 11 % of the color reproduction properties is improved compare to the existing LCD panel.

Electrical properties of the Porous polycrystalline silicon Nano-Structure as a cold cathode field emitter

  • Lee, Joo-Won;Kim, Hoon;Lee, Yun-Hi;Jang, Jin;Oh, Myung-Hwan;Ju, Byung-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1035-1038
    • /
    • 2002
  • The electrical properties of Porous polycrystalline silicon Nano-Structure (PNS) as a cold cathode were investigated as a function of anodizing condition, the thickness of Au film as a top electrode and the substrate temperature. Non-doped 2${\mu}m$-polycrystalline silicon was electrochemically anodized in HF: ethanol (=1:1) mixture as a function of the anodizing condition including a current density and anodizing time. After anodizing, the PNS was thermally oxidized for 1 hr at 900 $^{\circ}C$. Then, 20nm, 30nm, 45nm thickness of Au films as a top electrode were deposited by E-beam evaporator. Among the PNSs fabricated under the various kinds of anodizing conditions, the PNS anodized at a current density of 10mA/$cm^2$ for 20 sec has the lowest turn-on voltage and the highest emission current than those of others. Also, the electron emission properties were investigated as functions of measuring temperature and the different thickness of Au film as a top-electrode.

  • PDF

Development of Thermal Management System Heater for Fuel Cell Vehicles (연료전지 자동차용 TMS 히터 개발)

  • Han, Sudong;Kim, Sungkyun;Kim, Chimyung;Park, Yongsun;Ahn, Byungki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

The thermal cycle degration of MEA in PEMFC under cold start condition (냉시동 환경에서 thermal cycle이 FEMFC의 MEA 열화에 미치는 영향)

  • Rhee, Jun-Kee;Seo, Dong-Ho;Jeon, Yu-Kwon;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.412-414
    • /
    • 2009
  • In recent times, starting up polymer electrolyte membrane fuel cells(PEMFC) in sub-zero condition is a great challenge of fuel cell electric vehicle(FCEV). The water produced in a cathode during PEMFCs operate. The water changes into the form of solid/ice in sub-zero temperatures and this makes trouble in PEMFC cells. Voltage of PEMFC drops and cold startup is failed. This paper describes an experimental study on the effect of thermal cycle to degradation of MEA in PEMFC.

  • PDF

Theoreticel Analysis and Design of the Low-Energy Large-Aperture Electron Beam Generator (저에너지 대면적 전자빔 발생장치의 이론적 해석 및 설계에 관한 연구)

  • 우성훈;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.40-47
    • /
    • 1999
  • We have established a pulsed low-energy large-aIXTture electron beam(LELAEB) generation system with an energy of 2OO[keV], current of 1[A], pulse repetition rate of 200[Hz], and several tens of ${\mu}s$ pulse width. The system is characterized by a cold cathode that is simpler than the hot cathode. Electron beam does not need to be scanned over target objects because of large beam aIXTture of $300[\textrm{cm}^2]$. Electron source is secondary electrons that are generated when the ions from the glow discharge collide on the cathode surface. In this paper, We report about the design and manufacture of LELAEB generation system based on the theoretical analysis in order to study lXlssibility of increasing the efficiency of IELAEB accelerator. We also report on the possibility of large aperture beam current generation and the current density uniformity based on the experiIrental results.esults.

  • PDF

A Development of the Low Energy Large Aperture Electron Beam Generator (저에너지 대면적 전자빔 발생장치 개발(II))

  • Woo, Sung-Hun;Lee, Kwang-Sik;Lee, Dong-In;Cho, Chu-Hyun;Choi, Young-Wook;Lee, Hong-Sik;Abroyan, M.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1767-1769
    • /
    • 1998
  • We have established a pulsed electron beam generation system with an energy of 200[keV], pulse repetition rate of 200[Hz], and several tens of [${\mu}s$] pulse width. The system is characterized by a cold cathode that is simpler than the hot cathode. Target object does not need to be scanned because of large aperture electron beam of 300[$cm^2$]. Electron source is secondary electrons that are generated when the ions from the glow discharge collide on the cathode surface. In this paper, the discharge current characteristics are investigated experimentally as a function of He gas pressure in order to obtain stable glow discharge. And computer simulations are carried out as a preliminary study for the development of low energy large aperture electron beam generator. The variation of electon beam current is investigated as a function of rising time of high voltage when 20[kV] potential is applied in 20[mTorr] pressure.

  • PDF

Preparation and Characteristics of $La_{1-x}Sr_xCoO_3$ Cathode material as function of Sr mole fraction in SOFC (SOFC의 Sr 첨가량에 따른 $La_{1-x}Sr_xCoO_3$ Cathode 재료의 제조 및 특성 연구)

  • Park, J.H.;Eom, S.W.;Moon, S.I.;Park, T.G.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.202-204
    • /
    • 1994
  • Nowadays Perovskite $La_{1-x}Sr_xCoO_3$ is a preferred cathode material in the construction Solid Oxide Fuel Cell (SOFC). The $La_{1-x}Sr_xCoO_3$ with Sr contents ranging from X=0.0 to X=1.0 were prepared by a citrate method. All samples were examined by X-ray powder diffraction. The samples used for measuring thermal expansion were prepared as pellets by cold pressing and subsequent sintering in air at $1200^{\circ}C$ for 5 hours. To measure the sub-product of $La_{1-x}Sr_xCoO_3$ with YSZ, where coating films were sintered at $1200^{\circ}C$ for 5 hour.

  • PDF