• Title/Summary/Keyword: Cold and hot pattern

Search Result 62, Processing Time 0.019 seconds

A Study on the Characteristics of Descriptions of the Perspiration in "Hwangjenaegyeong(黃帝內經)" (황제내경(黃帝內經)에 보이는 한(汗)관련 서술(敍述)의 특징(特徵)에 대한 고찰(考察))

  • Lyu, Jeong-Ah;Jang, Woo-Chang;Baik, You-Sang;Jeong, Chang-Hyun
    • Journal of Korean Medical classics
    • /
    • v.23 no.2
    • /
    • pp.205-223
    • /
    • 2010
  • In Korean Traditional Medicine(abbreviated to K.T.M.), hyperhidrosis and anhidrosis are the targets of the medical treatment. Furthermore sweating appearance is also one of the important symptoms which explain a particular situation of the patient in K.T.M. And at "Sanghanron(傷寒論)" which is a traditional chief clinical bible written by Jang Gi(張機) later Han dynasty(漢代) in China made full use of the various kinds of diaphoresis[汗法] as a main medical treatment with purgation therapy[下法] and emetic therapy[吐法]. So the sweat in itself not only is the disease, but also is one of the symptoms explain a disease pattern. This thesis inquires into "Hwangjenaegyeong(黃帝內經)" referring to sweat which is the origin of recognition to the sweat in K.T.M. Some theses similar to this research had been made progresses and already reported, but most of them have classified the contents into biology, pathology, diagnosis, treatment after the model of western medical theory. In the aspect of comparative studying with other literature and clinic practical using, we found characteristics of referring to sweat in "Hwangjenaegyeong(黃帝內經)". And we classify the characteristics into some categories as follows. 1. There are some terms which make a title including sweat and symbolize the characteristics, for example sweat of soul[魄汗], sweat of death[絶汗], sweat of streaming[灌汗], sweat of weakness[白汗], sweat of sleep[寢汗], sweat of bright and heat[炅汗], sweat of kidney[腎汗], sweat of escaping[漉汗], cold sweat[寒汗], sweat on the head[頭汗], hyperhidrosis[多汗], heavy sweat[大汗]. But there aren't spontaneous sweat[自汗] or sweat like a thief[盜汗] which are the normal terms referring to sweat in history of K.T.M. And there are several descriptions about sweat appearance such as sweating in half of body[汗出偏沮], sweating in the rear end and thigh and knee[汗出尻陰股膝], hyperhidrosis in the neck and aversion to wind[頸多汗惡風], hyperhidrosis in the head and face and aversion to wind[頭面多汗惡風], cannot stopping the sweating under head[頭以下汗出不可止], make a person sweat to one's feet[令汗出至足], sweating like escaping[漯漯然汗出], sweating like soaking[汗出如浴], sweating become moist[汗出溱溱], hardly escaping sweat[汗大泄], escaping sweating[漉漉之汗], sweat moisten the pores [汗濡玄府], ceaseless sweating like pouring[汗注不休] sweating like pouring and vexation[汗注煩心], damp with sweat[汗汗然], sweating spontaneously[汗且自出], removal of fever with sweat drying[熱去汗稀]. That can be divided into sweat region and sweat form. 2. There are detailed explanations of the principle of perspirations caused by hot weather, hot food, hard working and meeting damp pathogen. 3. There are some explanations of the principle of removing fever due to the excessive heat from internal and external body through sweating by replenishing the body fluid. And many descriptions about overcoming the febrile disease by dropping temperature through sweating and many diaphoresis for curing. 4. There are some descriptions about five Jang organs perspirations and attachment of five mucous body fluid to five Jang organs. 5. There are pathogenic progresses after sweating affected by the Six Atmospheric Influences and water. And detailed explanations of disease mechanism a sweat leading to another disease. 6. There are descriptions about various sweat absent situations.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF