• Title/Summary/Keyword: Cold allodynia

Search Result 42, Processing Time 0.024 seconds

Sigma-1 Receptor Antagonist BD1047 Reduces Allodynia and Spinal ERK Phosphorylation Following Chronic Compression of Dorsal Root Ganglion in Rats

  • Son, Ji-Seon;Kwon, Young-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.359-364
    • /
    • 2010
  • Many therapeutic roles have been proposed for sigma-1 receptor (Sig-1R), but the involvement of Sig-1R in neuropathic pain has currently not been well explored. The present study aimed to evaluate the anti-nociceptive effect of Sig-1R antagonist (BD1047) in a rat model of chronic compression of the dorsal root ganglion (CCD), which is a model of human foraminal stenosis and radicular pain. When stainless steel rods were inserted into the intervertebral foramen of lumbar vertebrae 4 and 5, the CCD developed reliable mechanical (from 3 day) and cold allodynia (from 1 day) as compared with the sham operation group. The spinal expressions of Sig-1R and phosphorylation of extracellular signal-regulated kinase (pERK) were significantly increased from day 3 to day 14 after CCD surgery, as is consistent with the manifestation of allodynia. The BD 1047 (10, 30, 100 mg/kg) administered on postoperative days 0~5 dose-dependently suppressed both the induction of allodynia and the elevation of the spinal pERK expression in a manner comparable with that of gabapentin (100 mg/kg). At 7 days post-CCD surgery, BD1047 (10, 30, 100 mg/kg) administration also produced anti-nociceptive effects on the mechanical and cold allodynia similar with those of gabapentin (100 mg/kg). Therefore, this data suggested that Sig-1R may play an important role in both the development and maintenance of CCD-induced neuropathy.

Cold Allodynia after C2 Root Resection in Sprague-Dawley Rats

  • Chung, Daeyeong;Cho, Dae-Chul;Park, Seong-Hyun;Kim, Kyoung-Tae;Sung, Joo-Kyung;Jeon, Younghoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.2
    • /
    • pp.186-193
    • /
    • 2018
  • Objective : The purpose of this study was to evaluate pain-related behaviors after bilateral C2 root resection and change in pain patterns in the suboccipital region in rats. Methods : Male Sprague-Dawley rats were randomly assigned to three groups (n=25/group); $n{\ddot{a}}ive$, sham, and C2 resection. Three, 7, 10, and 14 days after surgery, cold allodynia was assessed using $20{\mu}L$ of 99.7% acetone. c-Fos and c-Jun were immunohistochemically stained to evaluate activation of dorsal horn gray matter in C2 segments of the spinal cord 2 hours, 1 day, 7 days, and 14 days after surgery. Results : Three days after surgery, the response to acetone in the sham group was significantly greater than in the $n{\ddot{a}}ive$ group, and this significant difference between the $n{\ddot{a}}ive$ and sham groups was maintained throughout the experimental period (p<0.05 at 3, 7, 10, and 14 days). Seven, 10, and 14 days after surgery, the C2 root resection group exhibited a significantly greater response to acetone than the $n{\ddot{a}}ive$ group (p<0.05), and both the sham and C2 resection groups exhibited significantly greater responses to acetone compared with 3 days after surgery. No significant difference in cold allodynia was observed between the sham and C2 root resection groups throughout the experimental period. Two hours after surgery, both the sham and C2 root resection groups exhibited significant increases in c-Fos- and c-Jun-positive neurons compared with the naive group (p=0.0021 and p=0.0358 for the sham group, and p=0.0135 and p=0.014 for the C2 root resection group, respectively). One day after surgery, both the sham and C2 root resection groups exhibited significant decreases in c-Fos -positive neurons compared with two hours after surgery (p=0.0169 and p=0.0123, respectively), and these significant decreases in c-Fos immunoreactivity were maintained in both the sham and C2 root resection groups 7 and 14 days after surgery. The sham and C2 root resection groups presented a tendency toward a decrease in c-Jun-positive neurons 1, 7, and 14 days after surgery, but the decrease did not reach statistical significance. Conclusion : We found no significant difference in cold allodynia and the early expression of c-Fos and c-Jun between the sham and C2 resection groups. Our results may support the routine resection of the C2 nerve root for posterior C1-2 fusion, but, further studies are needed.

Anti-allodynic Efficacy of NMDA Antagonist Peptide and Noradrenaline Alone and in Combination in Rodent Neuropathic Pain Model

  • Nasirinezhad, Farinaz;Hosseini, Marjan;Salari, Sajad
    • The Korean Journal of Pain
    • /
    • v.28 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Background: The present experiment was conducted to identify the cooperative effect of serine histogranin (SHG) and noradrenaline in alleviating peripheral neuropathic pain. Methods: Chronic constriction injury of the right sciatic nerve was used to induce chronic neuropathic pain. For drug delivery, a PE10 tube was inserted into the subarachnoid space. Acetone drops and a $44^{\circ}C$ water bath were used to evaluate the cold and heat allodynia, respectively. Placing and grasping reflexes were used to assess the locomotor system. Results: SHG at 0.5 and $1{\mu}g$significantly (P < 0.05) decreased the thermal allodynia. The cold allodynia was also significantly reduced by intrathecal injections of 0.5 (P < 0.05) and $1{\mu}g$(P < 0.001) of SHG. $1{\mu}g$of noradrenaline, but not $0.5{\mu}g$, significantly alleviated the cold (P < 0.01) and thermal (P < 0.05) allodynia. The ameliorating effect of noradrenaline or SHG disappeared when the two compounds were administrated in equal concentrations. A significant difference (P < 0.01 in the acetone and P < 0.05 in the heat) was observed in the groups under equal doses of the two compounds, with a lower effectiveness of the combination therapy. Conclusions: Our findings suggest that the simultaneous administrations of noradrenaline and SHG do not result in synergistic analgesia, and combination therapy may not be a good approach to the treatment of chronic neuropathic pain syndrome.

Inhibitory Effect of Scolopendrid Aqua-Acupuncture Injected at Hwando(GB30) on Neuropathic Pain in Rats (환도혈(環跳穴) 오공약침(五蚣藥鍼) 자극(刺戟)이 백서(白鼠)의 신경병리성(神經病理性) 통증(痛症) 억제(抑制)에 미치는 영향(影響))

  • Kim, Sung-nam;Kim, Sung-chul;Choi, Hoi-kang;So, Ki-suk;Lim, Jeong-a;Hwang, Woo-jun;Moon, Hyung-cheol;Choi, Sung-yong;Lee, Sang-kwan;Na, Chang-su
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.145-167
    • /
    • 2004
  • Objective : Neuropathic pain can be caused by a partial peripheral nerve injury. This kind of pain is usually accompanied by spontaneous burning pain, allodynia and hyperalgesia. It is not clear that scolopendrid aqua-acupuncture can control neuropathic pain effectively. The purpose of this study is to examine if scolopendrid aqua-acupuncture may be effective to the neuropathic pain (mechanical allodynia, cold allodynia) in a rat model of neuropathic pain. Methods : To produce the model of neuropathic pain, under isoflurane 2.5% anesthesia, tibial nerve and sural nerve was resected. After the neuropathic surgery, the author examined if the animals exhibited the behavioral signs of allodynia. The allodynia was assessed by stimulating the medial malleolus with von Frey filament and acetone. Three weeks after the neuropathic surgery, scolopendrid aqua-acupuncture was injected at Hwando(GB30) one time a day for one week. After that the author examined the withdrawl response of neuropathic rats' legs by von Frey filament and acetone stimulation. And also the author examined c-fos in the midbrain central gray of neuropathic rats and the change of WBC count in the blood of neuropathic rats. Results & Conclusion : 1. The scolopendrid aqua-acupuncture injected at Hwando(GB30) decreased the withdrawl response of mechanical allodynia in SHA-1, SHA-2 and SAH-3 group as compared with control group. 2. The scolopendrid aqua-acupuncture injected at Hwando(GB30) decreased the withdrawl response of chemical allodynia(cold allodynia) in SHA-1, SHA-2 and SAH-3 group as compared with control group. 3. The scolopendrid aqua-acupuncture injected at Hwando(GB30) showed the significant difference between sham group and control group(p=0.01), sham and SHA-3 group(p=0.026), control group and SHA-1 group(p=0.01), control group and SHA-2 group(p=0.024) in the c-fos expression. 4. The scolopendrid aqua-acupuncture injected at Hwando(GB30) showed the significant difference between sham group and SHA-3 group(p=0.010), control group and SHA-3 group(p=0.006) in the WBC count.

  • PDF

Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

  • Lee, Ji Hwan;Go, Donghyun;Kim, Woojin;Lee, Giseog;Bae, Hyojeong;Quan, Fu Shi;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water ($4^{\circ}C$) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of $M_2$ (methoctramine, $10{\mu}g$) and $M_3$ (4-DAMP, $10{\mu}g$) receptor antagonist, but not $M_1$ (pirenzepine, $10{\mu}g$) receptor antagonist, blocked the effect. Also, spinal administration of $5-HT_3$ (MDL-72222, $12{\mu}g$) receptor antagonist, but not $5-HT_{1A}$ (NAN-190, $15{\mu}g$) or $5-HT_{2A}$ (ketanserin, $30{\mu}g$) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a significant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic ($M_2$, $M_3$) and serotonergic ($5-HT_3$) receptors.

The Suppressive Action of Electroacupuncture on Cold Allodynia Development in the Rat Model of Neuropathic Pain (전침(電鍼)이 신경병증성(神經病症性) 냉이질통(冷異質痛) 발생(發生) 억제(抑制)에 미치는 영향(影響))

  • Park, Sang-Min;Lee, Yun-Ho;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.22 no.6
    • /
    • pp.27-36
    • /
    • 2005
  • Introduction : The aim of the study is to investigate the suppressive action of electroacupuncture on cold alloynia development in the rat model of neuopathic pain. Methods : To produce neuropathic pain, the right superior caudal trunk was resected $1{\sim}2\;mm$ between S1 and S2 spinal nerves. The rats were divided into control and four electroacupuncture groups: Two electroacupuncture groups were given 2 Hz or 100 Hz electroacupuncture for 20 minutes everyday after the sacral nerve injury. Other two electroacupuncture groups were given 2 Hz or 100 Hz electroacupuncture for 20 minutes just one session at one hour after the sacral nerve injury. The right point of Joksamni (ST36) was applied for electroacupuncture. The control group was induced neuropathic pain without electroacupuncture. The cold allodynia was assessed by immersing the tail in $4^{\circ}C$ water. The latency to an abrupt tail movement after rat tail immersion was measured with a cut-off time of 15 sec at 4th, 7th and 14th day after the sacral nerve injury. Results : The results were as follows; 1. At 4th experimental day, there were no significant differences between 2 Hz or 100 Hz electroacupuncture groups and the control group. 2. At 7th experimental day, everyday 2 Hz or 100 Hz electroacupuncture groups showed significant differences compared with the control group. But There were no significant differences between 2 Hz and 100 Hz electroacupuncture groups. 3. At 14th experimental day, everyday 2 Hz electroacupuncture group showed significant differences compared with the control group. But everyday 100 Hz electroacupuncture group showed no significant difference compared with the control group and everyday 2 Hz electroacupuncture group. 4. There were no significant differences between the control and 2 Hz or 100 Hz electroacupuncture groups which were done just one session at one hour after the surgery. 5. Everyday 2 Hz electroacupuncture group showed significant differences in the one session of the 100 Hz electroacupuncture group. Conclusion : Everyday 2 Hz electroacupuncture exerts a suppressive action on cold allodynia development in the rat model of neuropathic pain.

  • PDF

Effect of Stem Cell Transplantation on Pain Behavior and Locomotor Function in Spinal Cord Contusion Model

  • Park, Hea-Woon;Kim, Su-Jeong;Cho, Yun-Woo;Hwang, Se-Jin;Lee, Won-Yub;Ahn, Sang-Ho;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.3
    • /
    • pp.79-85
    • /
    • 2010
  • Purpose: Many trials for new therapeutic approaches such as stem cell-based transplantation have been conducted to improve the repair and regeneration of injured cord tissue and to restore functions following spinal cord injury (SCI) in animals and humans. Adipose tissue-derived stromal cells (ATSCs) have multi-lineage potential to differentiate into cells with neuron-like morphology. Most studies of stem cell transplantation therapy after SCI are focused on cellular regeneration and restoration of motor function, but not on unwanted effects after transplantation such as neuropathic pain. This study was focused on whether transplantation of ATSCs could facilitate or attenuate hindpaw pain responses to heat, cold and mechanical stimulation, as well as on improvement of locomotor function in a rat with SCI. Methods: A spinal cord injury rat model was produced using an NYU impactor by dropping a 10 g rod from a height of 25 mm on to the T9 segment. Human ATSCs (hATSCs; approximately $5{\times}10^5$ cells) or DMEM were injected into the perilesional area 9 days after the SCI. After transplantation, hindpaw withdrawal responses to heat, cold and mechanical allodynia were measured over 7 weeks. Motor recovery on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and on the inclined plane test were also evaluated. Results: The present study demonstrated that increased hindpaw withdrawal responses to cold allodynia was observed in both groups after transplantation, but the development of cold-induced allodynia in the hATSC transplantation group was significantly larger than in the control group. The difference between the two groups in locomotor functional improvement after SCI was also significant. Conclusion: Careful consideration not only of optimal functional benefits but also of unintended side effects such as neuropathic pain is necessary before stem cell transplantation therapy after SCI.

The effect of Acanthopanax sessiliflorus using the model of neuropathic pain and formalin-induced pain. (신경병리성 통증과 포르말린 테스트 통증 모델을 이용한 오가피(五加皮)의 효과)

  • Kim, Jang-Hyun;Chang, Gyu-Tae;Kang, Mi-Sun
    • The Journal of Korean Medicine
    • /
    • v.28 no.3 s.71
    • /
    • pp.261-272
    • /
    • 2007
  • Objectives : This study was conducted to determine the analgesic effect of Acanthopanax sessiliflorus using the model of neuropathic pain and formalin-induced pain. Methods : A model of neuropathic pain was made by injuring the tibial nerve and sural nerve while the common peroneal nerve was maintained. After 2 weeks, the Acanthopanax sessiliflorus was orally administered to rats. The author performed behavioral teststo try out mechanical allodynia using von frey filament and cold allodynia using acetone, which are calculated by counting withdrawal response on foot. Thirty minutes after the Acanthopanax sessiliflorus injection in the abdominal cavity, the formalin test was performed. 2% formalin in a volume of $20{\mu}l$was injected subcutaneously into the plantar surface of the hindpaw with 26-G needle. To access formalin-induced pain behavior, paw licking time was measured every 5 min. Results : The Acanthopanax sessiliflorus 400mg/10ml/kg group showed significant decrease the withdrawal response of mechanical allodynia using von frey filament in the 10min, 30min, 60min and 120min increments compared with the control group. There were no significant differences in each group in the withdrawal response of cold allodynia using acetone. The Acanthopanax sessiliflorus group showed significant decrease in the formalin-induced pain behavior in the 15min, 20min and 25min increments compared with the control group. Conclusions : The Acanthopanax sessiliflorus may have a significant analgesic effect on the general pain as well as nerve injury pain.

  • PDF

Anti-allodynic effect of bee venom on neuropathic pain in the rat

  • Lee, Bae-Hwan;Chae, Youn-Byoung;Hwang, Hye-Jeong;Choi, Young-Kook;Hahm, Dae-Hyun;Han, Seung-Moo;Kang, Sung-Keel;Lee, Hye-Jung;Pyun, Kwang-Ho;Shim, In-Sop
    • Advances in Traditional Medicine
    • /
    • v.6 no.4
    • /
    • pp.324-329
    • /
    • 2006
  • Neuropathic pain syndromes resulted from peripheral nerve injury appear to be resistant to conventional analgesics like opioids. However, it has been demonstrated that acupuncture including aqua-acupuncture may be effective in managing neuropathic pain. The present study was conducted to determine if bee venom injection into acupoint ihibits neuropathic pain, which is difficult to be treated by usual analgesics. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery. Two weeks after nerve injury, mechanical and cold allodynia were tested in order to evaluate the antiallodynic effects of bee venom injection into an acupoint. Intraperitoneal injection of morphine inhibited mechanical allodynia dose-dependently. Bee venom injected into Zusanli acupoint significantly inhibited mechanical and cold allodynia. These results suggest that bee venom-acupuncture as well as morphine is very effective to inhibit mechanical allodynia.

The Expression of the Ca++ Channel α2δ Subunit and TRPM8 in the Dorsal Root Ganglion of Sympathetically Maintained Pain and Sympathetic Independent Pain Rat Models (교감신경 의존적 및 비의존적 신경병증 통증 쥐 모델 후근신경절에서 Ca++ Channel α2δ subunit와 TRPM8 발현)

  • Han, Dong Woo;Kweon, Tae Dong;Kim, Yeon A;Choi, Jong Bum;Lee, Youn Woo
    • The Korean Journal of Pain
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2008
  • Background: Peripheral nerve injury induces up-regulation of the calcium channel alpha2delta (${\alpha}2{\delta}$) subunit and TRPM8 in the dorsal root ganglion (DRG) which might contribute to allodynia development. We investigated the expression of the ${\alpha}2{\delta}$ subunit and TRPM8 in the DRG of sympathetically maintained pain (SMP) and sympathetic independent pain (SIP) rat model. Methods: For the SMP model, the L5 and L6 spinal nerves were ligated tightly distal to the DRG. For the SIP model, the tibial and sural nerves were transected, while the common peroneal nerve was spared. After a 7 day postoperative period, tactile and cold allodynia were assessed using von Frey filaments and acetone drops, respectively. Expression of the ${\alpha}2{\delta}$ subunit and TRPM8 in the L5 and L6 DRG were subsequently examined by a Western blot. Results: There were no significant differences between the two models for the thresholds of tactile and cold allodynia. Expression of the ${\alpha}2{\delta}$ subunit in the ipsilateral DRG to the injury was increased as determined on a Western blot as compared to that in the contralateral or sham-operated DRG of the SMP model, but there was no difference in expression seen with the use of the SIP model. There was no difference in the expression of TRPM8 in the ipsilateral DRG to the injury and the contralateral or sham-operated DRG of either model. Conclusions: Up-regulation of the ${\alpha}2{\delta}$ subunit in injured DRG may play a role that contributes to tactile allodynia development in SMP, but not TRPM8 to cold allodynia after peripheral nerve injury.