• Title/Summary/Keyword: Cold Working

Search Result 325, Processing Time 0.029 seconds

Experimental investigations on composite slabs to evaluate longitudinal shear strength

  • Saravanan, M.;Marimuthu, V.;Prabha, P.;Arul Jayachandran, S.;Datta, D.
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.489-500
    • /
    • 2012
  • Cold-formed steel profile sheets acting as decks have been popularly used in composite slab systems in steel structural works, since it acts as a working platform as well as formwork for concreting during construction stage and also as tension reinforcement for the concrete slab during service. In developing countries like India, this system of flooring is being increasingly used due to the innate advantage of these systems. Three modes of failure have been identified in composite slab such as flexural, vertical shear and longitudinal shear failure. Longitudinal shear failure is the one which is difficult to predict theoretically and therefore experimental methods suggested by Eurocode 4 (EC 4) of four point bending test is in practice throughout world. This paper presents such an experimental investigation on embossed profile sheet acting as a composite deck where in the longitudinal shear bond characteristics values are evaluated. Two stages, brittle and ductile phases were observed during the tests. The cyclic load appears to less effect on the ultimate shear strength of the composite slab.

Effect of wire diameters on superconducting and mechanical properties of internal tin processed $Nb_{3}$ Sn wires (내부 확산법으로 제조한 $Nb_{3}$ Sn초전도선의 세선화에 의한 유연성 조사)

  • 하동우;오상수;이남진;하홍수;권영길;류강식;백홍구
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.29-32
    • /
    • 2001
  • Internal tin processed Nb$_3$Sn wires of intermediated worked state of were took from Mitsubishi and fabricated with various diameters ranging from 0.76 mm to 0.2 mm. These specimens were heat-treated at $460^{\circ}C$ for 70 h and at $570^{\circ}C$ for 100h to form bronze and at $700^{\circ}C$ for 100h to form Nb$_3$Sn compound. Bending strain Ic s of the wires were measured with various bending diameters ranging from flat to 76 mm. In order to investigate the sensitivity for strain, small diameters of wires were strain Ic at 6 T, 4.2 K. There were no breakage decrease during cold working to 0.2 mm of diameter and no decrease Jc to the diameter of 0.3 mm. The values of bending strain Ic of 0.2 mm and 0.3 mm diameters of the wires were not decreased at 76 mm of bending diameter.

  • PDF

Measuring Apparatus for Convective Heat Transfer Coefficient of Nanofluids Using a Thermistor Temperature Sensor (더미스터 온도센서를 이용한 나노유체의 대류열전달계수 측정 장치)

  • Lee, Shin Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • Fine wires made from platinum have been used as sensors to evaluate the convection performance of nanofluids. However, the wire sensor is difficult to handle due to its fragility. Additionally, an unrealistic convective heat transfer coefficient (h) is obtained if a rigorous calibration process combined with precision equipment is not used for measurement. This paper proposes a new evaluation apparatus for h of nanofluids that uses a thermistor sensor instead of the platinum wire. The working principles are also explained in detail. Validation experiments for pure engine oil comparing h from the two sensors confirmed numerous practical benefits of the thermistor. The proposed system can be used as a useful tool to justify the adoption of developed nanofluids.

New Ignition Method and Ignition Recognition Logic for a Microturbine (마이크로터빈의 새로운 점화 기법과 점화 인식 로직 개발)

  • Kim, Gi-Rae;Choi, Young-Kyu;Rho, Min-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • This paper presents new ignition method and ignition recognition logic for a microturbine. New ignition method is designed by constant speed control of a microturbine with pre-determined time during a ignition period. It make more accurate air-fuel ratio as well as give enough time to ignition system to have full performance under cold temperature. And ignition recognition logic is designed by observing output current change of inverter by generating output torque of a microturbine in the instant of ignition. For filtering a output torque current of inverter with high frequency, we applied a moving average method. So far, ignition recognition is usually implemented by measuring of exhausted gas temperature(EGT) of microturbine. The proposed logic can give more accurate judgement of ignition as well as keep a good working of starting system under out of order a temperature measuring system and biased initial value of EGT sensor. Finally, the two proposed logics are proved by field operating a microturbine under various conditions.

A Study on the Operating Characteristics by Counter Flow and Parallel Flow in Separate Heat Pipe Exchanger (분리형 히트파이프식 열교환기에서 향류 및 병류유동에 따른 가동특성에 관한 연구)

  • 이기우;장기창;유성연
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.44-56
    • /
    • 1998
  • Separate heat pipe exchanger is considered as the high thermal transportation equipment, because evaporator and condenser are separately positioned in the long distance. Its characteristics are that the working fluid is circulated naturally by the position height of two exchangers. But the operating characteristics are restricted by the temperature of hot and cold fluid, flow pattern and diameter of vapor line, etc. in this study, the vapor pressure and the minimum height of two exchangers are studied about the factors restricting the operating characteristics.

  • PDF

A Study on the Optimal Crimping Diameter of Aircraft Fuel Hoses in Manufacturing Process (항공기용 연료호스 제작시 최적 크림핑 직경에 관한 연구)

  • Jeon, Jun-Young;Kim, Byung-Tak
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2014
  • The high pressure hoses are widely used for the vehicles, aircraft, and overall industries. The hose assembly is generally composed of a nipple, a socket and a hose with reinforcement layers to increase the tensile strength. To produce the hose assembly, crimping or swaging process is usually used to clamp its components to ensure the prevention of fluid leakage. Crimping is a cold-working technique to form a strong bond between the workpiece and a non-metallic component. The crimping stroke is a primary parameter to be determined in the metalworking process, and it plays an important role in hose performance. This study aims at investigating the optimal crimping stroke according to the size of aircraft high pressure hose by using MSC/MARC. It is supposed that the results can be useful to get the information about the crimping stroke in manufacturing process, even with the different size of a hose.

An Investigation on Flow and Structural Characteristics of Heat Exchanger in Rankine Steam Cycle for Co-generation System (기관 폐열 회수를 위한 열교환기의 Baffle 길이 변경에 따른 성능 예측에 관한 수치 해석적 연구)

  • Ryu, Kyuhyenn;Kim, Kusung;Lee, Younghum;Kang, Seokho;Park, Gibeom
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.32-39
    • /
    • 2013
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop is used to recover waste heat from exhaust gas and a low temperature loop is used to recover waste heat from cold engine coolant. This paper has dealt with a layout of low temperature loop system, the review of the velocity contours through numerical analysis. According to the result of analysis, the designed heat exchanger. And comparing with flow analysis results, LT Boiler is safe to operation.

The Effect of Microstructural Evolution on Corrosion Property of Ti Plate with Heat Treatment (열처리에 따른 미세구조 변화가 Ti 판재의 부식특성에 미치는 영향)

  • Kim, Min Gyu;Lee, Chan Soo;Kim, Tae Gyu;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.12-17
    • /
    • 2018
  • We investigated the corrosion behavior of commercially pure cold working processed (CP)-Ti with coarse-grained (CG) microstructure heat-treated at $400^{\circ}C$ and $600^{\circ}C$, respectively. It is observed that corrosion resistance of as-received CP-Ti heat-treated at $400^{\circ}C$, at which recrystallization proceeds, is largely improved. Interestingly, the mechanical property of CP-Ti sample at $400^{\circ}C$ was scarcely deteriorated. It is attributed to the decrease of the defects such as strain variance and dislocation density. On the other hand, the annealing treatment at $600^{\circ}C$ of CP-Ti plate causes to grain growth with the noticeable reduction of mechanical property. Hence, it is considered that defect density such as strain and dislocation density is important microstructural parameter for the improvement of corrosion resistance. The introduction of proper annealing treatment can help to improve corrosion resistance without scarifying mechanical property of CP-Ti.

Development of Chain Conveyor-type Spinach Harvester

  • Jun H. J.;Hong J. T.;Choi Y.;Kim Y. K.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.40-44
    • /
    • 2004
  • This study was conducted to solve the problem of spinach harvesting done by manpower at the outdoor field during the cold winter season. Prototype spinach harvester was designed to dig, pick-up, and collect in a continuous operation for harvesting outdoor field-planted crawling type spinach. In the field test, two types of blades (Type A : angle of $150^{\circ}$, Type B : straight) were used for measuring the cutting loads of spinach and chain conveyor with lugs was used for picking up the root cut spinach. Prototype's vibrating blade reduced the digging power of the fixed blade by $46\%$. The loss was also very little ($0.7\%$) with a digging depth of 4 cm, an oscillation frequency of 748 rpm, and an oscillation distance of 33 mm. The working performance of the prototype spinach harvester was 38 hour/ha resulting to $96\%$ labor cost reduction compared to the conventional harvesting.

  • PDF

The Effect of $Y_2O_3$ Addition on the Mechanical Alloying of $Ni_3$Al ($Ni_3$Al의 기계적합금화에 미치는 $Y_2O_3$ 첨가의 영향)

  • 이상태
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.205-213
    • /
    • 1997
  • Mechanical alloying of $Ni_3Al$ and $Y_2O_3$ added ODS $Ni_3Al$ from elemental powders was investigated by the X-ray diffraction, differential scanning calorimeter, transmission electron microscopy and optical microscopy. The steady states of $Ni_3Al$ and ODS $Ni_3Al$ powders were reached after mechanical alloying with the condition of the ball-to-powder input ratio of 20:1 for 20 hours and 10 hours, respectively. The addition of nano-sized $Y_2O_3$ particles enhanced cold working and fracture, and subsequently accelerated MA of $Ni_3Al$ powders. DSC results of MAed $Ni_3Al$ powders showed four exothermic peaks at 14$0^{\circ}C$, 234$^{\circ}C$, 337$^{\circ}C$ and 385$^{\circ}C$. From the high temperature X-ray diffraction analysis, it was concluded that the peaks were resulted from the recovery solution of unalloyed Al in Ni, the formation of intermediate phase NiAl, and $LI_2$ ordering of MAed $Ni_3Al$ powders.

  • PDF