• Title/Summary/Keyword: Cold Work

Search Result 507, Processing Time 0.023 seconds

Peripheral Arterial Bypass using Interpositional Vein Graft in the Hypothenar Hammer Syndrome: A Case Report (소지구 망치증후군에서 정맥이식을 이용한 동맥우회술: 증례 보고)

  • Kim, Jeong Hong;Eun, Seok Chan;Heo, Chan Yeong;Baek, Rong Min;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.36 no.1
    • /
    • pp.89-92
    • /
    • 2009
  • Purpose: The clinical syndrome of unilateral finger ischemia, caused by digital artery occlusions from embolization from the palmar ulnar artery associated with repetitive striking of the palm, has been called the hypothenar hammer syndrome (HHS). We report the case of a man with this unique disease probably caused by manual work. Methods: A 52 - year - old male left - hand dominant manual worker complained of pain and coldness in the left 4,5th finger. On physical examination, there was a tip necrosis and the result of Allen's test was mildly positive(sluggish filling of hand from the ulnar artery). Arteriograms confirmed occlusion of the distal ulnar artery without direct perfusion of the superficial palmar arch and distal digital artery. Surgical bypass with reverse autologous vein grafting was performed between ulnar artery and superficial palmar arch, common digital artery. Results: He had an uneventful postoperative course and has remained asymptomatic for 18 months since discharge. Patency has been confirmed by color doppler with resolution of cold intolerance and successful digital preservation. Conclusion: We introduce very unique pattern of vascular ischemic disease and recommend the arterial bypass with vein interpositional grafting.

Development of Heating and Cooling System with Heat Pump for Nutrient Solution Bed In Greenhouse (열펌프를 이용한 양액베드 냉난방시스템 개발)

  • Kang, Geum-Chun;Kim, Yeong-Jung;Yu, Yeong-Seon;Baek, Lee
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2002
  • In order to control the root-zone temperature of greenhouse crops in the hydroponics at hot and cold season, heat pump system for cooling and heating was built and tested in this work. The system was air-to-water type and vapour compression type. The heating and cooling mode was selected by the four way valve. Capacity of the compressor was 3.75㎾ and heat transfer area of the evaporator and the condenser were 3.05㎡ and 0.6㎡, respectively. According to the performance test, it could supply heat of 42,360 to 64,372kJ/h depending on the water circulation rate of 600 to 1,500ℓ/h, respectively, when indoor air temperature was 10∼20$\^{C}$. COP of heat pump system was 3.0 to 4.0 in the heating mode. But, COP of the cooling mode was 1.3 to 2.1 at indoor temperature of 20∼35$\^{C}$. The feasibility test in the greenhouse the developed heating and cooling system was installed, showed that the heating cost of the developed system was only about 13% of that of the conventional heating system. The heating cost of the developed system was 367won/day(electric consumption 9.7㎾h/day), while that of the conventional system was 2,803won/day(oil consumption 7.7ℓ/day) at the same heating mode.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.26-34
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

Validation of Computational Fluid Dynamics Calculation Using Rossendorf Coolant Mixing Model Flow Measurements in Primary Loop of Coolant in a Pressurized Water Reactor Model

  • Farkas, Istvan;Hutli, Ezddin;Farkas, Tatiana;Takacs, Antal;Guba, Attila;Toth, Ivan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.941-951
    • /
    • 2016
  • The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM) 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD) calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively) with experimental results.

Effect of B4C Content on the Sintering Characteristics of 6061Al-B4C Composite Powder (B4C 함량에 따른 6061 Al-B4C 복합분말의 소결 특성 연구)

  • Park, Jin-Ju;Hong, Sung-Mo;Kim, Kyoung-Yeol;Lee, Min-Ku;Rhee, Chang-Kyu;Rhee, Won-Hyuk;Lee, Yang Kyu
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • In the present work, 6061 Al-$B_4C$ sintered composites containing different $B_4C$ contents were fabricated and their characteristic were investigated as a function of sintering temperature. For this, composite powders and their compacts with $B_4C$ various contents from 0 to 40 wt.% were fabricated using a planetary ball milling equipment and cold isostatic pressing, respectively, and then they were sintered in the temperature ranges of 580 to $660^{\circ}C$. Above sintering temperature of $640^{\circ}C$, real density was decreased due to the occurrence of sweat phenomena. In addition, it was realized that sinterability of 6061Al-$B_4C$ composite material was lowered with increasing $B_4C$ content, resulting in the decrease in its real density and at the same time in the increment of porosity.

VOIDS LENSING OF THE CMB AT HIGH RESOLUTION

  • SANGKA, ANUT;SAWANGWIT, UTANE;SANGUANSAK, NUANWAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.397-399
    • /
    • 2015
  • Recently, cosmic voids have been recognized as a powerful cosmological probe. A number of studies have focused on the effects of the gravitational lensing by voids on the temperature (and in some cases polarization) anisotropy of the Cosmic Microwave Background (CMB) background at relatively large to medium scales, l ~ 1000. Many of these studies attempt to explain the unusually large cold spot in CMB temperature maps and dynamical evidence of dark energy via detections of late-time integrated Sachs Wolfe (ISW) effect. Here, the effects of lensing by voids on the CMB temperature anisotropy at small scales, up to l = 3000, will be investigated. This work is carried out in the light of the benefits of adding large catalogues of cosmic voids, to be identified by future large galaxy surveys such as EUCLID and LSST, to the analysis of CMB data such as those from Planck mission. Our numerical simulation utilizes two methods, namely, the small-de ectionangle approximation and full ray-tracing analysis. Using the fitted void density profiles and radius (RV ) distribution available in the literature from N-body simulations, we simulated the secondary temperature anisotropy (lensing) of CMB photons induced by voids along a line of sight from redshift 0 to 2. Each line of sight contains approximately 1000 voids of effective radius $RV_{,eff}=35h^{-1}Mpc$ with randomly distributed radial and projected positions. Both methods are used to generate temperature maps. The two methods will be compared for their accuracy and effciency in the implementation of theoretical modeling.

The friction effects at high strain rates of materials under dynamic compression loads (동압축 하중을 받는 재료의 고변형도율에서의 마찰영향)

  • 김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.454-464
    • /
    • 1987
  • The objective of this research is to analyze and evaluate the dynamic flow curve of metals under impact loading at both high strain rate (.epsilon.=1/h dh/dt > 10$\^$3/m/s/m) and large strain (.epsilon.=In h/h$\_$0/ > 1.0). A test method for dynamic compression of metal disc is described. The velocity of the striker face and the force on the anvil are measured during the impact period. From these primitive data the axial stress, strain, and strain rate of the disc are obtained. The Strain rate is determined by the striker velocity divided by the specimen height. This gives a slightly increasing strain rate over most of the deformation period. Strain rates of 100 to 10,000 per second are achieved. Attainable final strains are 150%. A discussion of several problem areas is presented. The friction on the specimen surfaces, the determination of the frictional coefficient, the influence of the specimen geometry (h$\_$0//d$\_$0/ ratio) on the friction effect, the lock-up condition for a given configuration, the friction correction factor, and the evaluation of several lubricants are given. The flow function(stress verus strain) is dependent on the material condition(e.g., prior cold work), specimen geometry, strain rate, and temperature.

High-Pressure Finger Injection Injury Caused by Paint Thinner: Case Report (페인트 신나에 의한 수지 고압 손상의 경험)

  • Song, Jin Woo;Choi, Hwan Jun;Kim, Mi Sun
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.269-273
    • /
    • 2007
  • Purpose: High-pressure injection(HPI) injury is an injury caused by accidental injection of substances by industrial equipment. HPI injury of the hand is a serious injury that can be potentially devastating. There have been a number of publications on the results of its treatment and its functional outcome of these hands. Unfortunately, the clinical outcomes were unsatisfactory following an initial treatment approach of digital expression of the injection material, elevation, soaks, dressing changes, and antibiotics. Methods: A 43-year-old right handed man sustained a high pressure injection injury to the tip of the left index finger. The injected material was industrial paint thinner. Tissue necrosis was noted at the pulp of the finger. Several debridements and irrigation were required. A pedicled chest flap transfer was performed on the eighteenth day after injury as the dorsal nail complex remained viable. This is a retrospective review of our experience with high-pressure finger injection injury caused by paint. A literature review, retrospective chart and radiologic review were presented. Results: Follow-up length was about 1 year. The injuried hand was left nondominant hand, the index. Patient complaints were cold intolerance, paresthesia, contact pain, and impairment of activities of daily living. Conclusion: The outcome of high-pressure injection injuries of the hand is affected by many factors. The time between injury and operative treatment has been regarded as a key determinant by a number of authors. The nature of the injected material is probably more important. It has been noted by many authors that injuries with paints have a worse outcome than those with oil or grease. This study confirms the fact that high-pressure injection injury caused by paint thinner to the hand is a significant problem. Virtually a patient suffers sequelae of this injury. The injury has significant repercussions for future function and reintegration into the work force.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.445-452
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

  • PDF

An Alternative One-Step Computation Approach for Computing Thermal Stress of Asphalt Mixture: the Laplace Transformation (새로운 아스팔트 혼합물의 저온응력 계산 기법에 대한 고찰: 라플라스 변환)

  • Moon, Ki Hoon;Kwon, Oh Sun;Cho, Mun Jin;Cannone, Falchetto Augusto
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.219-225
    • /
    • 2019
  • Computing low temperature performance of asphalt mixture is one of the important tasks especially for cold regions. It is well known that experimental creep testing work is needed for computation of thermal stress and critical cracking temperature of given asphalt mixture. Thermal stress is conventionally computed through two steps of computation. First, the relaxation modulus is generated thorough the inter-conversion of the experimental creep stiffness data through the application of Hopkins and Hamming's algorithm. Secondly, thermal stress is numerically estimated solving the convolution integral. In this paper, one-step thermal stress computation methodology based on the Laplace transformation is introduced. After the extensive experimental works and comparisons of two different computation approaches, it is found that Laplace transformation application provides reliable computation results compared to the conventional approach: using two step computation with Hopkins and Hamming's algorithm.