• Title/Summary/Keyword: Cold Stamping

Search Result 23, Processing Time 0.021 seconds

A Study on the Springback Characteristics and Bracket Formabilities Enhancement of Aluminum Alloy Sheets for Autobody Application (차체용 알루미늄합금 판재의 스프링백 특성과 브래킷 성형성 향상에 관한 연구)

  • 최문일;강성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.64-76
    • /
    • 1997
  • This paper deals with development of brackets by using aluminum alloy sheets which is indispensable for weight reduction of autobody. The press formability of aluminum alloy sheet is estimated by means of tensile test, V bending test, sample manufacturing test and photograph of microstructure. The results show that the elongation, strength, work hardening exponent, plastic anisotropy coefficient of Al 6***series are better than those of Al 5***series, but for general press formability, Al 5***series are better than Al 6***series due to lower yield strength. Since most of mechanical properties of aluminum sheet are generally inferior to those of cold-rolled steel sheet, shape fixability and press formability of aluminum sheet are very poor. For making components of autobody by use of die for steel sheet application, it is essential that die should be nodified for least bending and stretching. With the modified die for aluminum, it could be possible to make brackets, the component of autobody. Microstructure of Al 5***series has fine grain and small the 2nd phase and that of Al 6***series has relatively coarse grain. Therefore, it seems that fine grain and small the 2nd phase of Al 5***series is one of the factor of lower yield strength, resistance to stamping work, formation of Luder's line.

  • PDF

Development of Combined Sheet Metal Forming and Plate Forging of a Metal Seal Part of Hub Bearing for an Automobile (자동차 허브 베어링용 씰 금속부품의 판재성형 및 판단조의 복합성형 공정 개발)

  • Park, K.G.;Moon, H.K.;Oh, S.K.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2020
  • In this paper, experimental and numerical study on a combined sheet metal forming and plate forging of a seal part of a passenger car's hub bearing is conducted to develop the new process of which target is to remove machining process by plate forging and to achieve near-net shape manufacturing. The previous process of a sheet metal forming inevitably needed a machining process for making stepped sheet after conventional sheet metal forming in a progressive way. The stepped sheet is intended to be formed by plate forging in this study. Through the systematic way of developing the combined forming process using solid elements based-elastoplastic finite element method (FEM), several conceptual designs are made and an optimized process design in terms of geometric dimensioning and tolerance of straightness of the thin part is found, which is exposed to bending in metal forming of axisymmetric part. The predicted straightness measured by the slope angle of the tilted thin region is compared with the experimental straightness, showing that they are in a good agreement with each other. Through this study, a systematic approach to optimal process design, based on elastoplastic FEM with solid elements, is established, which will contribute to innovating the conventional small-scaled sheet metal forming processes which can be dealt with by solid elements.

Mechanical Properties of Laser-Welded Multi-Material Tailor-Welded Blanks (레이저 TWB된 이종접합강의 기계적 특성)

  • Nam, Ki-Woo;Park, Sang-Hyun;Lee, Kyu-Hyun;Lee, Mun-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.857-863
    • /
    • 2012
  • In this study, tailor-welded blanks(TWB) were formed between high-strength steel(SABC1470) and cold rolled steels(SPFH590 and SPFC980) to improve passenger safety and reduce the weight of cars. Multi-material TWB specimens were highly strengthened through the heat treatment of SABC1470. The change in tensile strength caused by the stand-by time until water cooling after stamping and the deformation behavior of high-speed bending in a statically indeterminate condition such as in the center-pillar were evaluated. Multi-material TWB specimens that were heat-treated at the same temperature tended to show a decrease in tensile and yield strength, depending on the stand-by time until water cooling. On the other hand, Multi-material TWB specimens(SABC1470+SPFH590) that were heat treated at $850^{\circ}C$ showed good properties that were suitable for ensuring passenger safety in car accidents. From the viewpoint of passenger safety, it is best to use SABC1470 and SPFH590 in the upper and lower area of the center-pillar, respectively.