• Title/Summary/Keyword: Cold Reduction

Search Result 589, Processing Time 0.025 seconds

The Effects of 120Hz High Frequency Electroacupuncture on the Cold-Restraint-Induced Gastric Mucosal Damages (Cold-Restraint 스트레스 유발 위점막손상에 미치는 고빈도 120Hz 전침의 효과)

  • Jo, Mee-hyeong;Choi, Byung-tae;Jang, Kyung-jeon
    • Journal of Acupuncture Research
    • /
    • v.20 no.3
    • /
    • pp.177-193
    • /
    • 2003
  • Objective : The present studies investigated the effects of 120Hz high frequency electroacupunctue(EA) on the stress-induced stomach dysfunction in relation to its effect on the level of stress hormone and gastric mucosal damages. The gastric mucosal injury was induced by cold-restraint stress and two acupoints corresponding to Zusanli and Sanyinjiao in man were used. Methods: Cold-restraint stress produced typical gastric lesions in all rats of the stressed groups, but he number of ulcers as well as the mean ulcer diameter were reduced by 120 Hz EA pre-treatment. The cold-restraint stress also induced an increase in catecholamine response involving epinephrine, norepinephrine and dopamine, but an slight decline were observed in EA pre-treated rats compared with cold-restrained rats. Results: The degranulation value of gastric mast cell was significantly higher in cold-restrained rats than in control ones. However, with the significant reduction of degranulation values of gastric mast cells in EA pre-treated rats compared with cold-restrained ones, $PGE_2$ content in the gastric mucosa of EA pre-treated rats was also different from that observed in cold-restrained rats. Cold-restraint stress induced an elevated mRNA expression of pro-inflammatory gene such as cyclooxygenases-2 and tumor necrosis factor(TNF)-${\alpha}$, but these expression were down-regulated in EA pre-treated rats. Immunohistochemecal analysis showed that while the inhibitory-${\kappa}B{\alpha}$ an TNF-${\alpha}$ immunoreaction in the surface epithelium of the stomach tended to increase, both reactions in the EA pre-treated rats showed similar pattern as observed in controls. Conclusions : These results suggest that 120 Hz EA may act as a therapeutical means for gastric mucosal damages through a activation of pituitary adrenal system. it could be concluded that 120 hz high frequency electroacupuncture affords a good protective potential against stress-induce gastrointestinal dysfunction.

  • PDF

A Study on the Design of Cold Forging Die with Parted Notch (분할된 노치형상을 고려한 냉간단조 금형 설계에 관한 연구)

  • Lee, H.Y.;Yeo, H.T.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.452-456
    • /
    • 2007
  • Cold forging technology of a gear product is being interested in the dimensional accuracy, high stiffness and reduction of stress concentration. Especially it is needed to avoid the damage due to extremely high local pressure. Therefore it is important to reduce the high pressure in die design of cold forging. In this study, single die insert type and splitted die insert type are considered to recognize the notch effects in the die of sprocket forming. The stress concentration has been released at the notch area by the cushion effect in the splitted die insert.

A Study of HC Reduction with Hydrocarbon Adsorber Systems

  • Son, Geon-Seog;Yun, Seung-Won;Kim, Dae-Jung;Lee, Kwi-Young;Choi, Bung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1168-1177
    • /
    • 2000
  • Hydrocarbon adsorber is considered as a promising technology to reduce cold start HCs in automotive exhaust gas. In this study, three in-line adsorber systems were tried to reduce the cold start emission. To check the basic characteristics of adsorber converters, surface areas, TPD and TP A were examined after a hydrothermal aging. Also idle engine bench was used to find the adsorption and desorption capabilities of the adsorber systems at cold start. Finally a practicability of the adsorber systems for the LEV achievement was checked with FTP test on a 2.0 D MIT vehicle. The results of this study indicate that hydrocarbon adsorber system is one of the promising passive technologies to meet the ULEV regulation.

  • PDF

Molecular Analysis of Freeze-Tolerance Enhanced by Treatment of Trinexapac-Ethyl in Kentucky Bluegrass

  • Hwang, Cheol Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.176-179
    • /
    • 1999
  • Trinexapac-ethyl[ 4-(cyclopropyl- $\alpha$ -hydroxy-methylene)-3,5-dioxocyclohexane carboxylic acid ethylester] is a growth-retardant for plants by inhibiting a key step in biosynthesis of GA. A treatment of trinexapacethyl generally induces a reduction in vegetative growth and also inhibits heading. In addition, the trinexapacethyl was known to enhance the freeze-tolerance in annual bluegrass, however, the mechanism is not known yet. One possible reason for the enhanced freeze-tolerance may be the antifreeze protein known to be accumulated in intercellular space of the leaf during cold acclimation. In order to see the possible in-duction of the synthesis of antifreeze proteins by trinexacpacethyl, the apoplastic proteins extracted from Kentucky bluegrass treated with trinexapacethyl were analyzed by SDS-PAGE and the presence of the antifreeze protein was observed. In addition, western analysis showed the identity of the protein induced by both a cold acclimation and a trinexapacethyl treatment. It appears that an enhanced freeze-tolerance of the turf grass by trinexapacethyl is due to the synthesis and/or accumulation of the antifreeze protein similar to the enhanced freeze tolerance induced by cold acclimation.

  • PDF

Cold-formed steel channel columns optimization with simulated annealing method

  • Kripka, Moacir;Chamberlain Pravia, Zacarias Martin
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.383-394
    • /
    • 2013
  • Cold-formed profiles have been largely used in the building industry because they can be easily produced and because they allow for a wide range of sections and thus can be utilized to meet different project requirements. Attainment of maximum performance by structural elements with low use of material is a challenge for engineering projects. This paper presents a numerical study aimed at minimizing the weight of lipped and unlipped cold-formed channel columns, following the AISI 2007 specification. Flexural, torsional and torsional-flexural buckling of columns was considered as constraints. The simulated annealing method was used for optimization. Several numerical simulations are presented and discussed to validate the proposal, in addition to an experimental example that qualifies its implementation. The ratios between lips, web width, and flange width are analyzed. Finally, it may be concluded that the optimization process yields excellent results in terms of cross-sectional area reduction.

Development of a Cold Rolling Oil with Lubricity and Mill Cleanness Property (윤활성 및 압연기 청정성을 겸비한 냉간 압연유의 개발)

  • 한석영;송교봉;이준정
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.74-81
    • /
    • 1997
  • The purpose of this study is to develop a cold rolling oil with lubricity and mill cleanness property under the rolling conditions of high reduction ratio and high rolling speed. Six kinds of oil samples were blended. Evaluation of lubricity and anti-seizuro property of the samples were carried out with a laboratory scale rolling mill, where the contact conditions between work roll and strip are very close to actual cold rolling mill. Laboratory evaluation for dispersion, contamination, anti-oil stain property and residual carbon, etc. were carried out with several testers such as longterm circulation tester, Coulter counter and Conradson tester. A new high speed cold rolling oil with good lubricity and mill cleanness property was developed compared with the previously developed rolling oil.

Design and Exergy Analysis for a Combined Cycle of Liquid/Solid $CO_2$ Production and Gas Turbine using LNG Cold/Hot Energy

  • Lee, Geun-Sik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.34-45
    • /
    • 2007
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a solid $CO_2$ production ratio. The present study shows that much reduction in both $CO_2$ compression power (only 35% of the power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency (55.3% at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a solid $CO_2$ production ratio increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

Effect of Heat Treatment Conditions on the Microstructure and Mechanical Properties of Asymmetrically Cold Rolled OFC Sheet (비대칭 냉간압연된 무산소동 판재의 열처리 조건이 미세조직과 기계적 성질에 미치는 영향)

  • Kim, S.T.;Kwon, S.C.;Kim, D.V.;Lee, J.K.;Seo, S.J.;Yoon, T.S.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.5-10
    • /
    • 2020
  • Heat treatment conditions of 88.5% asymmetrically cold rolled oxygen free copper (OFC) sheets have been studied to obtain an equiaxed fine microstructure with a grain size of less than 10 ㎛. The commercial OFC sheets with the thickness of 10 mm were asymmetrically cold rolled by using equal speed asymmetric rolling (ESAR) processes and total rolling reduction. The thickness of the rolled sheets were 88.5% and 1.15 mm, respectively. An equiaxed fine microstructure of OFC sheets with a grain size of 6.0 ㎛ were obtained when the asymmetrically cold rolled OFC sheets were heat treated at 180℃ for 40 minutes. The tensile strength of the asymmetrically cold rolled specimen increased from 217.6 MPa to 396.1 MPa, while the elongation of the specimen asymmetrically cold rolled and heat treated increased from 29.0% to 66.9% along with an 8% increase of the tensile strength.

The Influence of Cooling on Muscle Force and Viscoelastic Properties of Human Tendon Structures in Vivo

  • Chae, Su-Dong;Jung, Myeong-Soo;Lee, Kyung-Il;Horii, Akira
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.30-38
    • /
    • 2006
  • This study was to investigate the influence of cooling on muscle force and viscoelastic properties of tendon structures in themedial gastrocnemius (MG) muscle. The subject was instructed to gradually increase force (10% MVC step) from a relaxed state to MVC within 3 s. At this time, it was measured by an ultrasonographic probe was attached and that an electrode was attached to monitor EMG. The F values at 50 100% of MVC were significantly greater under the cold condition than under the non-cold condition (p<.05). The ${\Delta}F/{\Delta}L$ values at 80~100% of MVC were significantly higher under the cold condition than under the non-cold condition (p<.05). The elongation under the non-cold condition had a tendency to be greater than that under the cold condition. The results suggest that cooling results in an increase in the stiffness of tendon structures with a reduction of muscle force and elongation.

  • PDF

Recombinant Expression, Isotope Labeling, and Purification of Cold shock Protein from Colwellia psychrerythraea for NMR Study

  • Moon, Chang-Hun;Jeong, Ki-Woong;Kim, Hak-Jun;Heo, Yong-Seok;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2647-2650
    • /
    • 2009
  • Cold shock proteins (Csps) are a subgroup of the cold-induced proteins on reduction of the growth temperature below the physiological temperature. They preferentially bind to single-stranded nucleic acids to translational regulation via RNA chaperoning. Csp plays important role in cold adaptations for the psychrophilic microorganism. Recently, Cold shock protein from psychrophilic bacteria, Colwellia psychrerythraea (CpCsp) has been identified. Three dimensional structures of a number of Csps from various microorganisms have been solved by NMR spectroscopy or X-ray crystallography, but structures of psychrophilic Csps were not studied yet. Therefore, cloning and purification protocols for further structural study of psychrophilic Csp have been optimized in this study. CpCsp was expressed in E. coli with pET-11a vector system and purified by ion exchange, size exclusion, and reverse phase chromatography. Expression and purification of CpCsp in M9 minimal media was carried out and $^{15}N$-labeled proteins with high purity over 90% was obtained. Further study will be carried out to investigate the tertiary structure and dynamics of CpCsp.