• 제목/요약/키워드: Cold Joint

검색결과 191건 처리시간 0.017초

CNN 보조 손실을 이용한 차원 기반 감성 분석 (Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis)

  • 전민진;황지원;김종우
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.1-22
    • /
    • 2021
  • 텍스트를 바탕으로 한 차원 기반 감성 분석(Aspect-Based Sentiment Analysis)은 다양한 산업에서 유용성을 주목을 받고 있다. 기존의 차원 기반 감성 분석에서는 타깃(Target) 혹은 차원(Aspect)만을 고려하여 감성을 분석하는 연구가 대다수였다. 그러나 동일한 타깃 혹은 차원이더라도 감성이 나뉘는 경우, 또는 타깃이 없지만 감성은 존재하는 경우 분석 결과가 정확하지 않다는 한계가 존재한다. 이러한 문제를 해결하기 위한 방법으로 차원과 타깃을 모두 고려한 감성 분석(Target-Aspect-Sentiment Detection, 이하 TASD) 모델이 제안되었다. 그럼에도 불구하고, TASD 기존 모델의 경우 구(Phrase) 간의 관계인 지역적인 문맥을 잘 포착하지 못하고 초기 학습 속도가 느리다는 문제가 있었다. 본 연구는 TASD 분야 내 기존 모델의 한계를 보완하여 분석 성능을 높이고자 하였다. 이러한 연구 목적을 달성하기 위해 기존 모델에 합성곱(Convolution Neural Network) 계층을 더하여 차원-감성 분류 시 보조 손실(Auxiliary loss)을 추가로 사용하였다. 즉, 학습 시에는 합성곱 계층을 통해 지역적인 문맥을 좀 더 잘 포착하도록 하였으며, 학습 후에는 기존 방식대로 차원-감성 분석을 하도록 모델을 설계하였다. 본 모델의 성능을 평가하기 위해 공개 데이터 집합인 SemEval-2015, SemEval-2016을 사용하였으며, 기존 모델 대비 F1 점수가 최대 55% 증가했다. 특히 기존 모델보다 배치(Batch), 에폭(Epoch)이 적을 때 효과적으로 학습한다는 것을 확인할 수 있었다. 본 연구에서 제시된 모델로 더욱 더 세밀한 차원 기반 감성 분석이 가능하다는 점에서, 기업에서 상품 개발 및 마케팅 전략 수립 등에 다양하게 활용할 수 있으며 소비자의 효율적인 구매 의사결정을 도와줄 수 있을 것으로 보인다.