• 제목/요약/키워드: Cold Gear Forging

검색결과 73건 처리시간 0.02초

다단단조 CV JOINT 생산품의 유한요소해석 (Process analysis of multi-stage forging by using finite element method)

  • 박광수;김봉준;권승오;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2006
  • The outer race of CV(constant velocity) joint is an important load-supporting automotive part, which transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. Traditional warm and cold forging methods have their own limitations to produce such a complex shaped part; warm forging requires complex system with relatively higher manufacturing cost, while cold forging is not applicable to materials with limited formability. Therefore, multistage forging may be advantageous to produce complex shaped parts. In order to build a multistage forging system, it is necessary to characterize mechanical properties in response to system design parameters such as temperature, forging speed and reduction. For the analysis of formability of multistage forging process, finite element method(FEM) has been used for the process analysis. As a model case, a constant velocity (CV) joint forging process is analyzed by FEM, since CV joint has a complex shape and also its required dimensional tolerances are very tight. The data acquired by FEM is compared with operational forging data obtained from an industrial production line. Based on this comparative analysis, multistage forging process for CV joints is proposed.

  • PDF

강소성 유한요소법의 역추적기법을 활용한 차동사이드기어의 스플라인 성형에 관한 연구 (Preform Design in forging of Spline of Side Gear by the FEM)

  • 김상현;강범수;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.129-136
    • /
    • 1994
  • Differential side bevel gears have been produced by machining process, but recently cold forging process for the bevel gear is under development in domestic industry. This study presents the possibility to form not only bevel gear but also spline gear at the same time using the experiment and numerical analysis. The preform shape is designed to form both bevel gear and spline gear simultaneously by the backward tracing scheme of the rigid-plastic finite element method(FEM). The experimental results confirm that the numerically-designed preform is satisfactory to form both bevel gear and spline gear. It is noted that the backward tracing scheme is helpful in designing preforms.

  • PDF

냉간 단조품의 치수 정밀 예측을 위한 유한요소해석 기술 (FE techniques for the accurate prediction of part dimension in cold forging)

  • 이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.29-33
    • /
    • 2003
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension only by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered as reality, FE results could predict the part dimension within the range of 10 $\mu\textrm{m}$. And if temperature also is considered really, the predicted dimensions are well coincided with the experimental down to about 5$\mu\textrm{m}$.

  • PDF

분할된 노치형상을 고려한 냉간단조 금형 설계에 관한 연구 (A Study on the Design of Cold Forging Die with Parted Notch)

  • 이효영;여홍태;허관도
    • 소성∙가공
    • /
    • 제16권6호
    • /
    • pp.452-456
    • /
    • 2007
  • Cold forging technology of a gear product is being interested in the dimensional accuracy, high stiffness and reduction of stress concentration. Especially it is needed to avoid the damage due to extremely high local pressure. Therefore it is important to reduce the high pressure in die design of cold forging. In this study, single die insert type and splitted die insert type are considered to recognize the notch effects in the die of sprocket forming. The stress concentration has been released at the notch area by the cushion effect in the splitted die insert.

냉간 단조품의 치수 정밀 예측을 위한 유한 요소 해석 기술 (FE Techniques for the Accurate Prediction of Part Dimension in Cold Forging)

  • 이영선;권용남;이정환
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.3-8
    • /
    • 2004
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered practically, FE results could predict the part dimension within the range of $10\mu\textrm{m}$. And if thermal effects also are considered additionally, the predicted dimensions are well coincided with the experimental down to about $5\mu\textrm{m}$.

크라운 치형을 갖는 직선 베벨기어의 제작 및 검증을 위한 CAD/CAM 시스템 활용 (Application of CAD/CAM System to the Manufacturing and the Verification of Straight Bevel Gear with Crown Teeth)

  • 이강희;박용복
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.270-275
    • /
    • 2008
  • 자동차용 직선 베벨기어는 대량으로 생산되고 있기 때문에 생산성 향상을 위해 기어가공용 전용기에서 직접 가공하던 것을 냉간 단조 제조방식으로 변경되어 생산되고 있다. 시행착오를 최소화하여 단조에 의한 정확한 최종 형상의 정밀 제품을 조기에 개발하고, 반복 재현성을 확보하는 방법으로 CAD/CAM 시스템의 도입이 필요하다. 본 연구에서는 CAD/CAM 시스템을 활용하여 크라운 치형을 갖는 직선 베벨기어를 모델링 한다. 이를 토대로 NC 데이터 생성과 검증을 통해 가공품을 사전에 예측을 한 후 물림시험의 결과를 통해 마스터 기어를 제작한다. 이러한 마스터기어를 통하여 금형제작이나 가공에 필요한 지그제작을 가능하게 한다.

배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구 (A Study on Net-shape Technology of Automotive Lock-up Hub using Cold Back Pressure Forming)

  • 권용철;이정환;이영선
    • 소성∙가공
    • /
    • 제17권2호
    • /
    • pp.124-129
    • /
    • 2008
  • Net shape forging technologies give many effects into the costs and qualities for the finished products. So, the studies to reduce the additional machining amount are very important in forging industry. Specially, there are two main topics in cold forging industry, such as, tool life and precision forging. In this study, new forging technique was proposed to eliminate the machining process for fixing up the length and improve the lead accuracy of gear. The luck-up hub is manufactured through many processes, such as upsetting, piercing and direct extrusion. The gear is formed in direct extrusion process; however, lead accuracy of the gear is over allowance limit. Therefore, the additional sizing process must be added. In this study, process design for closed-die forging of a lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

산업기계용 고밀도 Bevel Gear 제품화를 위한 성형성 연구 (forming of High Density Bevel Gear for Industrial Machinery)

  • 임성주;윤덕재;최석우;박훈재;김승수;나경환
    • 한국산학기술학회논문지
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2001
  • 회전성형법은 프레스 축 중심에 대하여 일정한 각도로 경사진 요동축과 원추형상의 상부 금형을 축 중심에 대하여 회전시키고 소재를 상승 가압하면 상부금형과 소재가 점진적으로 접촉하면서 제품을 성형하는 공정이다. 본 연구팀에서 개발된 회전 분말단조 프레스(500kN)를 이용해서 산업용 고밀도 베벨기어의 성형성 실험을 수행하였다. 실험결과로 회전 분말단조 공정과 회전 분말성형 공정에서의 성형하중, 성형밀도, 경도, 미세조직 등의 변화를 조사하여 제품의 기계적 성질을 규명하고 실제로 산업 전반에 적용할 수 있는 가능성을 제시한다.

  • PDF

A STUDY ON DISTORTION OF BEVEL GEARS AND DIE INDUCED BY FORGING AND HEAT TREATMENT

  • Cho J.R.;Kang W.J.;Kim M.G.;Lee J.H.;Lee Y.S.;Bae W.B.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.73-79
    • /
    • 2003
  • Recently many kinds of gears have been produced by forging in order to enhance the mechanical properties of the gears and the productivity of the process. Developments in forging technology are the reason for the increased usage. However, a critical problem of the forged gears is the dimensional change or distortion caused by elastic recovery after forging, and relief of the residual stresses during subsequent heat treatments. Distortion is of great concern to the manufacturers of precision parts, because it influences directly the dimensional accuracy and the grade of carburized bevel gears. In the present paper, distortion due to cold forging and heat treatment of bevel gears is investigated. Distortions of forged gears, machined gears and die are measured and compared. Numerical analysis is used to simulate the complete cold forging process and heat treatment process for the machined gears and shows good agreement with the experimental measurements.

  • PDF