• Title/Summary/Keyword: Cold Gas

Search Result 760, Processing Time 0.034 seconds

Design and Analysis for Hydrogen Liquefaction Process Using LNG Cold Energy (LNG냉열이용 수소액화 공정해석 및 설계)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • For the hydrogen liquefaction, the large amount of energy is consumed, because precooling, liquefaction and ortho/para conversion heats should be eliminated. In this paper the basic design and thermal analysis are carried out to reduce the energy consumption by using LNG cold energy for precooling process in hydrogen liquefaction processes. The LNG cold energy utilization for hydrogen precooling enables not only to get energy saving for liquefaction, but to recover the wasted cold energy to sea water at the LNG terminal. The results show that the energy saving rate for liquefaction using LNG cold energy is almost 75% of current industrial hydrogen liquefaction plant. The demand flow-rate of LNG is only 15T/D for 1T/D hydrogen liquefaction.

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.

A Study of Nd:YAG Laser Welding in Cold-reduced Carbon Steel and Stainless Steel Sheet (Nd:YAG 레이저를 이용한 냉연강판과 스테인레스강판의 용접)

  • Lee, Chul-Ku;Lee, Woo-Ram;Baek, Un-Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2010
  • We have studied on welding dissimilar materials of cold-reduced carbon steel sheet and stainless steel sheet together by using laser beam. It is well known that stainless steel is so strong againt rust and heat, while cold-reduced carbon steel is widely used in various parts of industry. In this research we have performed some experiments to know the possibility of welding dissimilar materials using laser beam by adjusting the power output of 3kW laser. Other conditions of the experiments were as follows : the welding speed was varied in the range between 2m/min and 7m/min, argon gas and helium gas were used as shield gas, the flow value of shield gas was ranged between $10{\ell}/min$ and $30{\ell}/min$, and the gap of two materials was ranged between 0mm and 0.3mm. In order to ascertain of the welded surface, we have done the tensile strength testing, the hardness testing and the microscope observation. As a result, we have found that tensile strength was the highest at the condition of the welding speed of 4, the flow value of $20{\ell}/min$, the gap of two materials 0, and the use of helium gas. Above testings have also showed that the tensile strength was generally satisfactory since the penetration of welding was almost complete due to the thinness of the materials. In addition, the formation of the welded area was excellent when it had the highest tensile strength.

Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

  • Hong, Yong-Ju;Ko, Junseok;Kim, Hyo-Bong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.

A Study on the Integrated Fusion Technology Between a Carbon Dioxide Emission and a District Cooling Energy Using a Cold Energy ($CO_2$ 배출문제와 냉열이용 지역집단 냉방에너지에 관한 통합적 융합기술 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.34-40
    • /
    • 2006
  • This paper provides a fusion technology between a district cooling energy system and an environment conservation policy based on the energy savings and reusable cold energy resources. The district heating and cooling systems are very effective ways for an energy saving, a cost reduction and a safety control. It is necessary to equalize the energy savings and an environmental preservation policy for an improved human lift. A gasification process of a liquefied natural gas, cooling water from deep seawater and an ice water thermal storage system may produce a cold energy. A district cooling system is used to cool an apartment, office buildings and factory facilities with a cooling energy supply pipeline. LNG cooling energy will switch a conventional air-conditioning system, which is operated by on electrical energy and a Freon refrigerant. Coincident with significant clean energy and operating cost savings, LNG cold energy system owen radical reductions in an air-borne pollutant, $CO_2$ and the release of environmentally harmful refrigerants compared with that of the conventional air-conditioning system. This study provides useful information on the fusion technology of a LNG cold energy usage and energy savings, and environmental conservation.

  • PDF

Characteristic Study of Micro-Nozzles according to the Ratios of Nozzle Expansion and Specific heats in low vacuum condition (저진공상태에서 노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성 연구)

  • Kim, Youn-Ho;Jung, Sung-Chul;Huh, Hwan-Il
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.249-252
    • /
    • 2006
  • We conducted the experiment to analyze characteristics of micro-nozzle using different cold gas under two different nozzle expansion ratios in low vacuum condition. We measured thrust and chamber pressure and mass flow rate under low vacuum condition, and then compared them with those in ambient pressure.

  • PDF

Preliminary Study of Micro Cold Gas Thruster

  • Moon, Seonghwan;Oh, Hwayollng;Huh, Hwanil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.617-621
    • /
    • 2004
  • Miniaturization of subsystems including propulsion systems is recent trends in spacecraft technology. Small space vehicle propulsion is not only a technological challenge of a scaling system down, but also a combination of fundamental flow/combustion constraints. In this paper, physical constraints of micronozzle for cold gas micro-thruster are reviewed and discussed. Method to measure small thrust are also described.

  • PDF

The liquefaction system of the exhaust gas using cold energy in underwater engine (수중기관에서 냉열을 이용한 배기가스 액화시스템 해석)

  • Lee, Geun-Sik;Jang, Yeong-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1591-1602
    • /
    • 1996
  • In operating the underwater engines such as encountered in exploring submarines, the dumping of the exhaust gas out of the engine requires a large portion of the total power, frequently amounting to 25-30% of the power generated. This unfavorable circumstance can be cured by liquefying the exhaust gas and storing it. In the present study, two liquefaction systems were simulated to enhance the overall efficiency; one is a closed cycle diesel engine and the other is a closed cycle LNG engine. The liquefied natural gas (LNG) is chosen as a fuel, not only because its use is economical but also because its cold energy can be utilized within the liquefaction system. Since a mixture of oxygen and carbon dioxide is used as an oxidizer, liquefying carbon dioxide is of major concern in this study. For further improving this system, the intercooling of the compressor is devised. The necessary power consumed for the liquefying system is examined in terms of the related properties such as pressure and temperature of the carbon dioxide vessel as a function of the amount of the exhaust gas which enters the compressor. The present study was successful to show that much gain in the power and reduction of the vessel pressure could be achieved in the case of the closed cycle LNG engine. The compression power of exhaust gas were observed remarkably lower, typically only 6.3% for the closed cycle diesel engine and 3.4% for the closed cycle LNG engine respectively, out of net engine power. For practicality, a design -purpose map of the operating parameters of the liquefaction systems was also presented.

Improvement of Cooling Technology through Atmosphere Gas Management

  • Renard, Michel;Dosogne, Edgar;Crutzen, Jean-Pierre;Raick, Jean-Marc;Ma, Jia Ji;Lv, Jun;Ma, Bing Zhi
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.217-222
    • /
    • 2009
  • The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Drever International developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas; the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipments between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.