• Title/Summary/Keyword: Cold Forming

Search Result 400, Processing Time 0.035 seconds

Experimental and Analytical Study on the Die Wear during the Upsetting Processes (업셋팅 금형의 마모 실험 및 해석)

  • 박종남;김태형;강범수;이상용;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.122-130
    • /
    • 1996
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to abtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

  • PDF

Study on the Cold Formability of Drawn Non-heat Treated Steels (신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구)

  • 박경수;박용규;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.364-369
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. However, non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to study their mechanical properties and the cold formability. The cold formability of three steels was investigated by estimating the deformation resistance and the forming limit. The deformation resistance was estimated by calculating the deformation energy, and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strains of ultra low carbon bainitic steel and low-Si steel were higher than that of commercial SWRCH45F steel.

Prediction of springback on cold forming of Mg-alloy (Mg 합금 판재 냉간 성형품의 탄성회복량 예측)

  • Lee Y. S.;Kim M. C.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.43-46
    • /
    • 2004
  • Since Mg alloy has many attractive advantages among the practically used metals, many researchers have been studied to develop useful process and material. However, study for sheet forming has not been a few because of low formability on room temperature. Formability and springback for AZ31 alloy sheet have been studied to develop the cold forming technology. The experimental and FE analysis were performed to analyzed the springback amounts by using a model of our on. A different three materials were used to investigate the effects of material characteristics. The springback amounts of Mg-alloy sheet formed part were larger than that of the other material.

  • PDF

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to obtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

Development of Pre-heat-treated High Strength CHQ Wires and Forming Technology for them (고강도 냉간압조용 선조철강 및 제품화 기술 개발)

  • Yoon, D.J.;Kim, E.Z.;Ahn, S.T.;Son, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.35-36
    • /
    • 2009
  • Development trend and current status were surveyed for pre-heat-treated high strength cold heading quality (CHQ) wire and it's forming technology. Spheroidizing, quenching, and tempering heat treatments are eliminated by adapting the pre-treated wire, which could reduce energy consumption rate and green house gas emission rate during produce parts requiring high strength. There are some challenging problems to expand application area such as enhancing forming tool life, and preventing delayed failure. Domestic research movement concerning the development and application of the new high strength wire was introduced.

  • PDF

Fine Wire Extrusion Technology (극세선 압출 기술 개발)

  • Kim S. S.;Park H. J.;Jun D. J.;Lim S. J.;Choi T. H.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.97-101
    • /
    • 2001
  • Fine metal (Au, Ag, Cu) wire was extruded with hydrostatic extrusion process in cold condition. A vertical type 900kN hydrostatic extruder has been developed. The extruder was facilitated with high pressure container which are available for hot and cold forming. The container endured 1400MPa internal pressure and extrusion ratio To was achieved in cold forming for Au fine wire which had $600{\mu}m$ diameter. In contrast to the conventional macroscopic-sized-billet fine-wire requires higher extrusion pressure and effect of friction is much more significant.

  • PDF

Experimental Study on Pressure Welding of Cu and Al at Cold and Warm Temperatures (냉간 및 온간에서의 구리와 알루미늄 압접에 관한 실험적 연구)

  • 심경섭;김용일;장성동;김원술;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.225-228
    • /
    • 2003
  • This paper is concerned with pressure welding, which has been known as a main bonding mechanism for the cold and warm clad forming. Bonding characteristics of pressure welding between the copper and aluminum plates are experimentally investigated. Experiments are performed at the cold and warm temperature range with the variation of important factors such as magnitude of pressure, surface roughness of Cu and Al plates, and pressure holding time. It could be concluded that the bonding criterion might be given as a function of bonding pressure and surface roughness for the cold and warm temperature ranges.

  • PDF