• Title/Summary/Keyword: Cold Forming

Search Result 400, Processing Time 0.028 seconds

Performance evaluation of the forming methods used in the production of bellows for LNG carriers I - Comparison of design methods and mechanical properties of bellows - (LNG 선박용 벨로우즈의 제작시 성형방법에 따른 성능 평가 I - 벨로우즈의 제작방법 및 기계적 특성 비교 -)

  • Kim, Pyung-Su;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.587-592
    • /
    • 2016
  • Bellows for LNG carriers must be corrosion resistant in order to operate in seawater environments. They must also have long fatigue lives in order to withstand the expansion and contraction caused by large temperature changes and continuous vibration in extreme environments. In order to incorporate these properties into bellow design, it is important to use materials that are resistant to cold brittleness and corrosion, and maintain their optimized forming condition. The design conditions and forming methods used for bellows must be optimized in order to incorporate these characteristics. In this study, finite element analysis was used to develop cryogenic bellows, which have good mechanical strength and reliability. In addition, two different forming methods (mechanical and hydroforming) were used to design and produce bellows, in order to derive their forming condition. The height, thickness, and hardness of the convolutions of bellows produced by each method were measured and compared with each other. The results confirmed that the two forming methods produced bellows with different mechanical properties.

Development of Combined Sheet Metal Forming and Plate Forging of a Metal Seal Part of Hub Bearing for an Automobile (자동차 허브 베어링용 씰 금속부품의 판재성형 및 판단조의 복합성형 공정 개발)

  • Park, K.G.;Moon, H.K.;Oh, S.K.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2020
  • In this paper, experimental and numerical study on a combined sheet metal forming and plate forging of a seal part of a passenger car's hub bearing is conducted to develop the new process of which target is to remove machining process by plate forging and to achieve near-net shape manufacturing. The previous process of a sheet metal forming inevitably needed a machining process for making stepped sheet after conventional sheet metal forming in a progressive way. The stepped sheet is intended to be formed by plate forging in this study. Through the systematic way of developing the combined forming process using solid elements based-elastoplastic finite element method (FEM), several conceptual designs are made and an optimized process design in terms of geometric dimensioning and tolerance of straightness of the thin part is found, which is exposed to bending in metal forming of axisymmetric part. The predicted straightness measured by the slope angle of the tilted thin region is compared with the experimental straightness, showing that they are in a good agreement with each other. Through this study, a systematic approach to optimal process design, based on elastoplastic FEM with solid elements, is established, which will contribute to innovating the conventional small-scaled sheet metal forming processes which can be dealt with by solid elements.

Forming Characteristics of Outer Shell Structure for Thrust Chamber Nozzle Extension (연소기 노즐확장부 외피구조물의 성형 특성)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.428-432
    • /
    • 2010
  • A study on the forming characteristics of outer shell structure for thrust chamber nozzle extension has been performed. In order to identify anisotropy of cold rolled sheet metal, three types of tensile specimens according to the direction to the sheet rolling axis were prepared and tested, and Landford's values were obtained using the results and applied to structural analysis. Forming characteristics of the outer shell structure of the nozzle extension are investigated through manufacturing and forming of the full scale outer shell structures, and strain values obtained by the forming processes are compared to the numerical analysis results. The results obtained by this study will be utilized to design forming tools and processes for manufacturing other outer shell structures which have a bigger expansion area ratio.

  • PDF

Finite Element Analysis of a Screw Rolling Process (유한요소법을 이용한 나사전조 공정의 해석)

  • Jang, S.J.;Lee, M.C.;Han, S.S.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.128-131
    • /
    • 2009
  • In this paper, three-dimensional finite element analysis of screw rolling process of a long shaft bolt is conducted by using a rigid-plastic finite element method based metal forming simulator AFDEX 3D. A whole sequence of cold forming processes of a long shaft bolt composed of forging and screw rolling processes is simulated to reveal the mechanism of screw formation. A mesh density control function is applied near the major plastic deformation region to achieve computational efficiency.

  • PDF

Try out and Analytical Researches on Quenching Process of Coupled Torsion Beam Axle using Boron Steel Tube (보론강을 이용한 CTBA의 후열처리 공정 실험 및 해석)

  • Yoon, S.J.;Park, J.K.;Kim, Y.S.;Suh, C.H.;Lee, K.H.;Kim, R.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.181-184
    • /
    • 2009
  • The hot press farming process, which is the press hardening of steel parts using cold dies, can utilize both ease of shaping and high strength due to the hardening effect of rapid quenching during the pressing. In this study, a thermo-elastoplastic analysis of the hot press forming process using the finite element method was performed in order to investigate the deformation behavior and temperature history during the process and the mechanical properties of the pressed parts.

  • PDF

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

Analysis of Grain Size Controlled Rheology Materials Dynamics for Prediction of Solid Particles Behavior (레오로지 소재의 고상입자 거동 예측을 위한 결정립 동력학 해석)

  • Kim H.I.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1337-1340
    • /
    • 2005
  • A rheology casting technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forming. The liquid segregation is important on mechanical properties of materials using rheology casting. In this study, so, molecular dynamics simulations were performed for the control of liquid segregation. Because the dynamics of fluid flow about nano-scaled materials is completely different from continuum, molecular dynamics simulations were used. The behavior of particles was far from the truth according to boundary conditions in simple flow. But various movement of particles appear at two or more molecular simulations.

  • PDF

Particle Flow Analysis of Grain-Size Controlled Rheology Materials (결정립제어 레오로지 소재의 입자유동 해석)

  • 김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.774-777
    • /
    • 2004
  • A rheology casting technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forming. The liquid segregation is important on mechanical properties of materials using rheology casting. In this study, so, molecular dynamics simulations were performed for the control of liquid segregation. Because the dynamics of fluid flow about nano-scaled materials is completely different from continuum, molecular dynamics simulations were used. The behavior of particles was far from the truth according to boundary conditions in simple flow. But various movement of particles appear at two or more molecular simulations.

  • PDF

Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile (자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Dong-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

A Study on the Forming Process Design of Engine Pulleys for Automobiles (자동차 엔진풀리 성형 공정 설계에 관한 연구)

  • 신보성;최두선;송선호;백재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.630-634
    • /
    • 1997
  • In this paper,we will discuss in the forming process design of the making engine pulleys for automobiles. These pulleys are required to be made by precision deep drawing process because these are to be combined with bearings and engine timing belts. These pulleys are used of cold rolled steel plates starting with the initial blanking size of 115.2mm and the initial thickness of 1.2mm. Our deep drawing process is designed the continuous 5-steps process, that is, 1'st deep drawing, 2'nd reverse redrawing, 3'rd trimming, 4'th drawing-ironing and 5'yh piercing. This process need no in-process annealing.

  • PDF