• 제목/요약/키워드: Cold Deformation property

검색결과 16건 처리시간 0.022초

초음속 저온분사법에 의한 알루미늄 합금 모재의 변형과 적층된 알루미늄 층의 물성에 대한 연구 (Study about material properties of Al particles and deformation of Al alloy substrate by cold gas dynamic spray)

  • 이재철;안성훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.145-148
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold gas dynamic spray is conducted by powder sprayed by supersonic gas jet, and generally called the kinetic spray or cold-spray. Cold-spray was developed in Russia in the early 1980s to overcome the defect of thermal spray method. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but our research team tried to apply this method to macro scale deposition. The macro scale deposition causes deformation of a thin substrate which is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy and properties of deposited aluminum layer such as coefficient of thermal expansion, Elastic modulus, hardness, electric conductivity were measured. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

초음속 저온분사법에 의해 적층된 알루미늄 층의 재료 물성 (Material Properties of Thick Aluminum Coating Made by Cold Gas Dynamic Spray Deposition)

  • 이재철;안성훈
    • 한국정밀공학회지
    • /
    • 제23권10호
    • /
    • pp.88-95
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold-spray uses supersonic gas flow to carry metallic powders to the substrate. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but in this study macro scale deposition was conducted. Properties of aluminum layer by cold-spray deposition such as coefficient of thermal expansion (CTE), modulus of elasticity. hardness, and electric conductivity were measured. The results showed that properties of aluminum layer by cold-spray deposition were different from properties of pure aluminum and aluminum alloy.

Understanding of the Shear Bands in Amorphous Metals

  • Park, Eun Soo
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.63-73
    • /
    • 2015
  • Shear banding is an evidence of plastic instability that localizes large shear strains in a relatively thin band when a material is plastically deformed. Shear bands have attracted much attention in amorphous metals, because shear bands are the key feature that controls the plastic deformation process. In this article, we review recent advances in understanding of the shear bands in amorphous metals regarding: dislocations versus shear bands, the formation of shear bands, hot versus cold shear bands, and property manipulation by shear band engineering. Although there are many key issues that remain puzzling, the understanding built-up from these approaches will provide a new insight for tailoring shear bands in amorphous metals, which potentially leads to unique property changes as well as improved mechanical properties. Indeed, this effort might open a new era to the future use of amorphous metals as a new menu of engineering materials.

저탄소 마르텐사이트 강의 냉간압연과 온간압연을 통한 미세조직 개질

  • 이종철;강의구;이중원;오창석;김성준;남원종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2009
  • There have been a number of works on manufacturing ultrafine grained steels with average ferrite grain sizes of smaller than a few micrometers to develop beneficial high strength steels. Among microstructures in low carbon steels, lath martensite is known to be useful to produce an ultrafine grained ferrite matrix and finely globular cementite particle. Thus, severe plastic deformation and subsequent annealing at lower temperature of lath martensite would become an effective way to produce ultrafine grained steels. However, most ultrafine grained steels exhibited a total elongation of a few per cent in tensile tests. Such a defect is one of the primary factors restricting the potential applications of ultrafine grained steels. Therefore, the improvement of the strength-elongation balance is required for the application of ultrafine grained structural steels. In this study, the effect of deformation temperatures on microstructure, such as ferrite grain size and the distribution of cementite particles, and mechanical property of lath martensite steels, was investigated. Specimens were fabricated through cold rolling or warm rolling and subsequent annealing.

  • PDF

Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system

  • Ivan Jeff Navea;Jebie Balagosa;Seok Yoon;Yun Wook Choo
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1854-1862
    • /
    • 2024
  • This study aims to investigate the strain-dependent-deformation property of Gyeongju bentonite buffer material. A series of unconfined compressive tests were performed with cylindrical specimens prepared at varying dry densities (𝜌d = 1.58 g/cm3 to 1.74 g/cm3) using cold isostatic pressing technique. It is found that as 𝜌d increase, the unconfined compressive strength (qu), failure strain, and elastic modulus (E) of Gyeongju compacted bentonite (GCB) increases. Normalized elastic modulus (Esec/Emax) degradation curves of GCB specimens are fitted using Ramberg-Osgood model and the elastic threshold strain (𝜀e,th) is determined through the fitted curves. The strain-dependency of E and Poisson's ratio (v) of GCB were observed. E and v were measured constant below 𝜀e,th of 0.14 %. Then, E decreases while v increases after exceeding the strain threshold. The Esec/Emax degradation curves of GCB in this study suggests wider linear range and higher linearity than those of sedimentary clay in previous study. On top of that, the influence of 𝜌d is observed on Esec/Emax degradation curves of GCB, showing a slight increase in 𝜀e,th with increase in 𝜌d. Furthermore, an empirical model of qu with 𝜌d and a correlation model between qu and E are proposed for Gyeongju bentonite buffer materials.

열간 압연판재 제조기술의 최신동향 (Recent Trends in Flat Hot Rolling of Steel)

  • 이준정
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.24-35
    • /
    • 2002
  • Recent trend and future prospect of flat rolling of steel has been summarized based on the earlier reports. Key technology in the plate rolling is to have ultra fine microstructure having high resistance against crack propagation during application. Heavy accelerated cooling facility and high power rolling mill will be helpful to develope the high toughness steel. Precise modeling of properly prediction based on deformation and transformation imposed on microstructure of steel during processing is highly anticipated. For the hot strip rolling process, new trend is lies on the production of ultra-thin gauged hot strip to substitute cold rolled strip. For the substitution of cold rolled strip into hot rolled strip widely, high formable property of hot strip is highly required. For the formabilit, the ferritic rolling of extra low carbon steel under high lubricated condition is essential. Recently introduced semi-continuous thin slab and rolling mill line is very plausible to develope those kinds of products easily In the view groin facility combination. New idea to modify the existing continuous hot strip mill line to produce the ultra thin-gauged hot strip in an economic way is suggested in this report.

비조질강의 바우싱거 효과에 미치는 변형율 영향 (Effect of Pre-strain on the Bauschinger Phenomenon of Micro-Alloying Forging Steel)

  • 권용남;이영선;김상우;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.313-316
    • /
    • 2005
  • In the present study, Bauschinger effect was investigated for the micro-alloying forging steel which has been developed for about 30 years ago to save energy consumption by eliminating the heat treatment processes in the forging industry. The micro-alloying steels used fur cold forging industry mainly aim to replace the usual carbon steel. With the conventional carbon steels, all the deformation history can be eliminated after the final heat treatment(quenching and tempering). In the case of micro-alloying forging steels, however, the prior deformation history should be taken into consideration to meet the mechanical property requirement since the microstructure of micro-alloying steels might exhibit the Bauschinger effect, which was not needed to consider in the case of conventional carbon steel having quenching and tempering treatment. In the present study, the reverse loading tests were carried out to determine the Bauschinger effect of micro-alloying steel which composed of ferrite and cementite phases.

  • PDF

Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능] (The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity])

  • 손동욱;정상훈;김재환;이종문;김익수;강창룡
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF