• Title/Summary/Keyword: Cold Bottom Water

Search Result 173, Processing Time 0.025 seconds

黃海水 와 循環에 관한 考察 (A Note on Water Masses and General Circulation in the Yellow Sea (Hwanghae))

  • 이흥재
    • 한국해양학회지
    • /
    • 제19권2호
    • /
    • pp.187-194
    • /
    • 1984
  • 黃海에서 水塊와 循環에 대해 간략히 檢討, 討議하였다. 水塊는 黃海冷水, 黃海溫流水, 沿岸水, 陽子江 稀釋수 네가지로 分類된다. 黃海冷水는 長技 海洋觀測資料와 최근 CTD로 資料부터 32.0~33.0%의 鹽分, 1$0^{\circ}C$이하의 水溫을 갖고 있는 것으로 定義할 수 있다. 海水循環은 南部海域에서 年中 反時計方向의 海水循環이 存在한다. 겨울철에는 中國沿岸을 따라 南向하는 沿岸流流가 北風, 北西風으로 인해 强하게 나타나며 濟州道 西部 海域에 강한 水溫.鹽分前線이 잘 보여주듯 黃海暖流는 弱해진다. 반면에 여름철에는 陽子江 釋수가 濟州道 쪽을 향해 北東쪽으로 擴張하며 中國 沿岸流가 상당히 減少하게 된다. 지금 까지 여름철 東南黃海에서 北向流를 黃海暖流로 分類하였으나 류의 延長이 아니라 沿岸水와 黃海冷水사이 境界面을 따라 形成되는 密度流로 보는 것이 더욱 妥當하다.

  • PDF

원격탐사에 의한 동중국해 중규모 와동류의 시공간적 변동 연구 (Temporal and Spatial Variation of the Mesoscale Cold Core Eddy in the East China Sea Using Satellite Remote Sensing)

  • 서영상;장이현;이나경;안유환;윤홍주
    • 대한원격탐사학회지
    • /
    • 제20권4호
    • /
    • pp.245-252
    • /
    • 2004
  • 동계 동중국대륙의 연안수가 발달하여 쿠로시오 난류의 경계역으로 확장된 후 주변의 북상 난류역에 의해 포획됨으로써, 고립되는 현상이 1999년 및 2003년 NOAA 위성영상에 포착되었다. 1999년의 경우 냉핵 와동류(cold core eddy)는 약 2개불간 존재하였고 (5월초~6월 하순), cold core의 중심 수온은 15~2$0^{\circ}C$로 주변보다 2~3$^{\circ}C$ 낮게 나타났다. NOAA 위성수온 영상에 포착된 냉핵 와동류의 주변 가장자리 해역에서 SeaWiFS 위성자료로부터 추정된 클로로필 $\alpha$ 분포는 4.0~6.0 mg/m$^3$으로 냉핵 와동류 중심해역의 농도 1.0~3.0 mg/m$^3$ 보다 2배정도 높게 나타났다. 2003년 경우 2월중순에 냉핵 와동류 중심수온은 9~1$0^{\circ}C$였다. 와동류의 크기는 직경 150km 정도였으며, 냉핵 와동류의 수평 분포양상은 50m 등수심 분포와 유사하게 나타났다. 이어도(Socotra Rock) 해역을 중심으로 동계-춘계에 발생되는 냉핵 와동류의 형성 메카니즘은 중국대륙 연안수와 쿠로시오 난류가 만나는 경계역에서 수괴간의 힘의 균형, 계절풍 조건 및 해저 지형 분포와 밀접한 관계성이 있는 것으로 나타났다.

수온층을 고려한 저층수 취수 기술에 관한 연구 (A Study on Extracting Bottom Water Taking in Concern of Temperature Level Boundaries)

  • 심경종;박희문;임현묵;조수;이수열;박태진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1285-1290
    • /
    • 2008
  • The interest in use of new field of energy and unused existing potential energy has been raised in number of advanced countries including South Korea. As a respond of the interest and the following reactions, a new technology which helps to reduce bad environmental factors and decrease national energy consumption rate in the way of extract cold-heat energy in dam water. This research focuses on a method that enables taking the water flows in desirable temperature range whilst keeping water temperature boundaries of bottom level water. The analysis was made in simulating on CFD. In order to keep the temperature boundary level, a deep well pump was set in piping in the simulation. As the significant result, the most alteration in temperature was found when the smallest size of pipe was plumbed. However, when the flow has small value of velocity, no matter how big the piping size was, the temperature variation was negligible. Therefore, possible hypothesis was made as bigger piping as fast flow will have better function in the way to keep the temperature boundary level.

  • PDF

Water Masses and Salinity in the Eastern Yellow Sea from Winter to Spring

  • Park, Moon-Jin;Oh, Hee-Jin
    • Ocean and Polar Research
    • /
    • 제26권1호
    • /
    • pp.65-75
    • /
    • 2004
  • In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.

2008년 남해동부해역의 Cochlodinium polykrikoides 적조발생 특성 (Characteristics of Cochlodinium polykrikoides Bloom in Southeast Coastal Waters of Korea, 2008)

  • 임월애;이영식;박종규
    • 한국해양학회지:바다
    • /
    • 제14권3호
    • /
    • pp.155-162
    • /
    • 2009
  • 2008년 한반도 남해동부해역에서 Cochlodinium polykrikoides 적조의 발생, 진행 및 소멸현상을 식물플랑크톤 종조성, 물리 화학적 환경요소와 기상자료를 이용하여 분석하였다. 2008년 C. polykrikoides 적조는 7월말에 조기 발생하여 저밀도로 장기간 연안해역에 집중되어 발생하였다. 7월 초부터 동해남부해역에서 발생한 냉수대의 영향으로 외해로부터 C. polykrikoides 가입이 어려웠으며, 연안 저층의 포자(cyst) 발아에 의한 적조발생 이후 약한 바람 및 가뭄으로 인한 낮은 영양염 농도로 적조가 확산 성장하지 못하고 연안해역에 제한되어 발생한 것으로 판단된다.

디젤차량 SCR 시스템용 요소수용액의 동결과 해동 현상 (Freezing and Melting Phenomena of Urea-water Solution for Diesel Vehicle SCR System)

  • 최병철;서충길;명광재
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.5-10
    • /
    • 2009
  • Urea-SCR system, the selective catalytic reduction using urea as reducing agent, is a powerful technique to reduce nitrogen oxides(NOx) emitted from diesel engines. However, a tank of urea(32.5 wt%)-water solution can be frozen in low ambient temperature levels of below $-11^{\circ}C$. The purpose of this study is to understand freezing and melting phenomena of the urea-water solution, and its can be applied to get the urea-water solution from frozen it within 5 minutes after cold start. Factors considered were the type of heater and the urea tank shape. From the results, it was found that melting volume of cartridge heater B during 5 minutes of heating period was 83ml when supplying electric power of 150W. Horizontal heater B, which was put in the narrow bottom space of the tank T1, had fast melting characteristics.

  • PDF

한중콘크리트의 현장 표면단열 양생공법 시공사례 연구 (Field Application of Surface Insulation Curing Method to Cold Weather Concreting)

  • 김종백;임춘근;한민철;김성수;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

Numerical Modelling Of The Coastal Upwelling Near The Poleward Edge Of The Western Boundary Current

  • An, Hui Soo
    • 한국해양학회지
    • /
    • 제16권1호
    • /
    • pp.12-23
    • /
    • 1981
  • A numerical experiment is made in order to clarify the mechanism of the upwelling phenomenon along the coast near the poleward edge of the western boundary current. The possibility of the upwelling is suggested from the analysis of the observational data in the east of Honshu, Japan, and in the south eastern coast of Korean Peninsula. This upwelling phenomenon is very deep and can be traced to the bottom layer. The upwelling phenomenon seems to be a general oceanic feature which characterizes the region along the west coast near the poleward edge of the western boundary current. This experiment is simulating the oceanic condition of the transition region between Kuroshio front and the Oyashio front in the east of Honshu, Japan. The possible explanations of the causes of the upwelling are as follows;In the interior of the modeled ocean the cold heavy water supplied from the north and the warm light water from the south make the north-south gradient of the pressure field and accelerate the eastward current to produce the h-orizontal divergence feld near the west coast. The divergence is compensated by the upwelling near the separation region. Another one is that the upwell-ed cold water strengthen constantly the pressure gradient which is balanced by the northward current and is weakened by the horizontal diffusion.

  • PDF

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

태양열 콤비시스템의 축열조에 적용되는 분배기의 효과 (The Effect of a Manifold in a Storage Tank Applied to a Solar Combisystem)

  • 손효석;홍희기
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.322-328
    • /
    • 2014
  • Return piping is used in a solar combi-system for heating and hot water supply. When the temperature of the lower side of a storage tank is low due to hot water usage, the returned hot water after heating is mixed with the lower side cold water of the tank, and the useful energy is reduced. We studied the degree of thermal stratification in the tank, using either a diffuser or a manifold to prevent mixing. Using the diffuser, mixing starts from the bottom of the storage tank. On the other hand, the manifold has the marked effect of preventing mixing. As a result of experiments with changing the diameter and number of holes in the manifold, the optimum condition is 8.5 mm diameter and 96 holes, under the condition of 0.3 lpm.