• Title/Summary/Keyword: Cold Bottom Water

Search Result 172, Processing Time 0.026 seconds

Temporal and Spatial Variation of SST Related to the Path of Typhoons around the Korean Waters in Summer (태풍 통과에 따른 한국 연근해 수온 변동)

  • 서영상;김동순;김복기;이동인;김영섭;김일곤
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.627-636
    • /
    • 2002
  • While typhoons were passing by the coastal and offshore waters around the Korean peninsula, the variations of the sea surface temperature (SST) were studied. To study on the variation, the data related to the 22 typhoons among 346 typhoons which occurred in the western Pacific during 1990∼1999, daily measured field SSTs at coastal and offshore, and imageries from advanced very high resolution radiometer on NOAA satellite during 1990∼1999 were used. The average variations of the SSTs were -0.9℃ at coastal waters and -2℃ at offshore around the Korean peninsula while the typhoons were passing by. In very near coastal waters from the land, the SST was not changed because the bottom depth of the coastal waters was shallower than the depth of thermalcline, while the typhoon was passing. The temporal and spatial variation of SSTs at coastal waters in summer were depended on the various types of the typhoons'paths which were passing through the Korean peninsula. When a typhoon passed by the western parts including the Yellow Sea of the Korean peninsula upwelling cold water occurred along the eastern coastal waters of the peninsula. The reason was estimated with the typhoon that was as very strong wind which blew from south toward north direction along the eastern shore of the peninsula, led to the Ekman transport from near the eastern coastal area toward the offshore. While cold water was occurring in the eastern coast, a typhoon passed over the coastal area, the cold water disappeared. The reason was estimated that the cold water was mixed up with the surrounding warm water by the effect of the typhoon. While a cold water was occurring in the eastern coast, a typhoon passed by the offshore of the eastern coast, there were the increasing of the SST as well as the disappearing of the cold water. While a typhoon was passing by the offshore of the eastern coast, the cold water which resulted from the strong tidal current in the western coast of the peninsula was horizontally spread from the onshore to the offshore. We think that the typhoon played the role of the very strong wind which was blowing from north toward south. Therefore, the Ekman transport occurred from the onshore toward the offshore of the western coast in the Korean peninsula.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

Hydraulics of a two-layer rotating flow; Application to the Korea Strait

  • Cho, Yang-Ki;Kim, Kuh
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.9-12
    • /
    • 1995
  • The Korea Strait becomes deeper than 200 m from south to north in general except coastal area, whereas its southern part is shallower than 125 m except for a deep trough (Fig.1). The flow in the Korea Strait could be simplified as two layers (Isobe, 1995); the Tsushima Warm Water in the upper layer and the Korea Strait Bottom Cold Water (KSBCW) in the lower layer (Fig.2). (omitted)

  • PDF

A Review of Ocean Circulation of the East/Japan Sea (한국 동해 해수순환의 개략적 고찰)

  • 김종규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.103-107
    • /
    • 2001
  • The major studies of an ocean circulation of the East/Japan Sea related to evaluate the feasibility and utilization of deep ocean water are reviewed. The major feature of surface current system of the East/Japan Sea is an inflow of the Tsushima Warm Current through the Korea/Tsushima Strait and the outflow through the Tsugaru and Soya Straits. The Tsushima Warm Current has been known to split into two or three branches in the southern region of the East/Japan Sea. In the cold water region of the East/Japan Sea, the North Korean Cold Current turns to the east near 39$^{\circ}$N after meeting the East Korean Warm Current, then flows eastward. The degree of penetration depends on the strength of the positive wind stress curl, according to the ventilation theory. Various current meter moorings indicate strong and oscillatory deep currents in various parts of the basin. According to some numerical experiments, these currents may be induced by pressure-topography or eddy-topography interaction. However, more investigations are needed to explain clearly the presence of these strong bottom currents. This study concludes the importance of topographical coupling, isopycnal outcropping, different wind forcing and the branching of the Tsushima Warm Current on the circulation of the East/Japan Sea.

  • PDF

What is Happening in the East Sea (Japan Sea)?: Recent Chemical Observations during CREAMS 93-96

  • Kim, Kyung-Ryul;Kim, Kuh
    • Journal of the korean society of oceanography
    • /
    • v.31 no.4
    • /
    • pp.164-172
    • /
    • 1996
  • CREAMS (Circulation Research of the East Asian Marginal Seas) Expeditions have provided a rare opportunity to carry out precise measurements of salinity, temperature and chemical tracers extensively in all major basins of the East Sea (Japan Sea) in 1993-1996 for the first time in more than 60 years since Uda's investigation (Uda, 1934). Studies revealed unequivocal evidence that the East Sea Proper Water (ESPW), previously known as a single homogeneous water mass, is indeed made of several distinct water masses. CREAMS data further confirmed the earlier observations of Gamo et al. (1986) that properties in Deep Waters in the East Sea have been changing during at least the last 25 years. There is evidence, especially from the analysis of the DO profile, that these changes may result from a major change in the mode of deep water formation: from bottom water formation in the past to intermediate/deep water formation in recent years. The causes for these changes are not clear at the present time, but nay include natural variation and may also reflect recent global changes in regional scale. A moving-boundary box model is presented to describe current observations, predicting the turnover time of the total deep and bottom waters to the cold surface waters to be ${\sim}$80 years in 1996.

  • PDF

Structure and Dynamics of the Cold Water in the Western Channel of the Korea Strait (대한해협 서수도 냉수의 구조와 역학)

  • Cho, Yang-Ki;Kim, Kuh;Kim, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.132-139
    • /
    • 1997
  • CTD and current observation were taken to investigate the structure of the cold water in the Western Channel of the Korea Strait in October 1993. Thickness of the cold water in the deep trough of the strait changes from 20 m to 70 m according to the water depth. Thermocline between the Tsushima Warm Water and the cold water deepens from north to south with 0.00057 in slope. Temporal variation of the thickness appears to be related with the tidal current. The maximum variation is 20 m for 48 hours. Mean velocity of the cold water for 72 hours is 17 cm/sec southward. A simple model was used to understand dynamically the southward flow of the cold water and the return flow at the upper part in the lower layer. Calculated maximum southward flow and eddy viscosity coefficient are 7 cm/sec and 0.038 $m^2$/sec respectively in the model. Southward transport is $0.032$\times$10^6㎥/sec$ at the northern part in the trough and decreases from north to south due to the presence of the return flow. Southward transport increases with the increase in the upper layer transport but is not affected by the density of the upper layer or the interface slope.

  • PDF

Year-to-year Variability of the Vertical Temperature Structure in the Youngsan Estuary

  • Cho, Yang-Ki;Lee, Kyeong-Sig;Park, Kyung-Yang
    • Ocean and Polar Research
    • /
    • v.31 no.3
    • /
    • pp.239-246
    • /
    • 2009
  • Long-term observations were conducted between 1997 and 2002 to examine the variability of the vertical temperature structure in the Youngsan Estuary, southwest Korea, in summer. The observed hydrographic data revealed that the temperature minimum layer in the middle depth persisted through the entire summer of 2000 but was rarely observed in other years. The variability in the vertical structure might be affected by the air temperature during the previous winter and the density difference between the open sea and the estuary. In 2000, the air temperature in the previous winter was lowest and the horizontal density difference during summer was largest. The large horizontal density difference probably produced more active driving of warm water along the bottom, which would have intruded into the Youngsan Estuary. Furthermore, the cold previous winter would have provided a better condition for maintaining cold temperatures in the middle water layer for a longer period.

Hydrography and Currents in the Southeastern Sea of Korea, October 1982 (한국 동남해역의 해양현상에 관한 연구)

  • Kim, Ku;Min, Byeong-Eon
    • Journal of the Korean Institute of Navigation
    • /
    • v.8 no.1
    • /
    • pp.49-70
    • /
    • 1984
  • Spatial and temporal variations of hydrography and currents are investigated in the Southeastern Sea of Korea during October 1982. The distribution of the water mass of high salinity (>34.40${\textperthousand}$) and low dissolved oxygen concentration (<5.0ml/l) indicates that the Tsushima current flows northward as it passes the Western Channel of the Korea Strait. The cold water (<$6.0^{\circ}c$) with low salinity (<$34.20{\textperthousand}$) and high dissolved oxygen concentration (>6.0ml/l) reaches the bottom of the western channel of the Korea Strait after flowing southward leaning against the slope rather than following the deepest part of the Channel. Repeated sections in the Korea Strait show a remarkable change of hydrographic structure over a period of 4 days ; both warn and cold waters are intensified, particularly in the eastern part of the strait toward the Tsushima Island.

  • PDF

Water Masses and Frontal Structures in Winter in the Northern East China Sea (동중국해 북부해역의 겨울철 수계와 전선구조)

  • 손영태;이상호;이재철;김정창
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.327-339
    • /
    • 2003
  • During the winter in February 1998, January and April 1999, interdisciplinary research was conducted in a large area including the South Sea of Korea and northern East China Sea to examine distribution and structure. Water masses identified from the observed data are Warm Water originated from Tsushima Warm Current, Yellow Sea Cold Water (Northern or Central Cold Water) and Korean Southern Sea Cold Water. In the southern Yellow Sea, Warm Water originated from Tsushima Warm Current, flowing into the Cheju Strait after turning around the western Cheju Island, makes a front of '┍' shape, which is bounded by the Yellow Sea Central Cold Water in the southern part of Daeheuksan Island and by the Yellow Sea Northern Cold Water in the eastern part of the Yangtze Bank. This front changes its corner shape and position with strength of the warm water extension toward northwestern Yellow Sea. The position and structure of the fronts off the southwestern tip of the Korean peninsular and near the Yangtze Bank varies with observation period. In the front in the South Sea of Korea, cold coastal water which if formed independently due to local cooling, ,sinks along the sloping bottom. We explained the processes of variations in the distribution and structure of these winter fronts in terms of up-wind and down-wind flow by the seasonal monsoon, heat budget through the sea surface and density difference across the fronts.

The Relationship between Oceanographic Condition and Fishing Ground Distribution of Yellow Croaker in the East China Sea and the Yellow Sea (동지나해, 황해의 참조기 어장분포와 해황과의 관계)

  • YANG Seong-Ki;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 1982
  • The East China Sea and the Yellow Sea are abundant in nutritions because of river inflows and are important as the nursery and spawning grounds of demersal and pelagic fishes. The remarkable thermal front between the Yellow Sea Bottom Cold Water and the Tsushima Warm Current is formed in this region, and the fluctuation of this front may affect the variation of the yellow croaker fishing ground. To investigate the mechanism of the yellow croaker fishing ground, the distribution ana seasonal change of the fishing ground are examined by using catch of stow net fishery (Fisheries Research and Development Agency, 1970-1979) and the water temperature data (Japan Hydrographic Association, 1978). The main fishing ground of yellow croaker was nine sea areas (rectangle of 30' latitude by 30' longitude) located at 40-150 nautical miles west and southwest of Jeju Island, the area of which occupies no more than $11\%$ of all fishing grounds, and it appeared that about $70\%$ of total catch of ten years was concentrated in this area. The main fishing periods were from March to May and September to October. The coefficients of variation of the catch for the main fishing ground were from 0.8 to 2.1 and the condition of all fishing grounds was generally unstable. The mean CPUE was 27kg/haul at the main fishing ground, while it was the largest on boundary area of the Yellow Sea Bottom Cold Water. It was found that the seasonal movement of fishing ground is related to the expansion and reduction of the Yellow Sea Bottom Cold Water ($10^{\circ}C$).

  • PDF