• Title/Summary/Keyword: Cold Air Nozzle

Search Result 45, Processing Time 0.026 seconds

The effect of the number of nozzle holes on the energy separation (보텍스튜브의 노즐홀수가 에너지분리에 미치는 영향)

  • 유갑종;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.692-699
    • /
    • 1999
  • The vortex tube is a sample device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. The phenomena of energy separation through the vortex tube were investigated experimentally, to see the effects of the number of nozzle holes on the energy separation. The experiment was carried out with the number of nozzle holes from 1 to 10 by varying inlet pressure and cold mass fraction. The experimental results were indicated that the effective number of nozzle holes for the best cooling performance was found as 4. Also, to find effective use in a given operation conditions, the temperature difference of cold air and the cooling capacity of vortex tube was compared. The result is that cooling capacity was more important than temperature difference of cold air.

  • PDF

Inflow Nozzle Conditions for Improving Vortex Tube Performance (보텍스튜브 성능향상을 위한 유입노즐 조건에 관한 연구)

  • Choi, Hoon-Ki;Yoo, Geun-Jong;Lim, Yun-Seung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.68-76
    • /
    • 2018
  • A vortex tube is a simple energy separating device that splits a compressed air stream into a cold and hot stream without any external energy supply or chemical reactions. The efforts of many researchers and designers have been focused on improvement of vortex tube efficiency by changing the parameters affecting vortex tube operation. The effective parameters are nozzle specifications and inflow pressure conditions. Effects of different nozzle cross-sectional area and number of nozzles are evaluated by computational fluid dynamics (CFD) analysis. In this study, CFD analysis of 3-D steady state and turbulent flow through a vortex tube was performed. We investigated the cold air mass flow rate, the cold air temperature, and the cold air heat transfer rate behavior of a vortex tube by utilizing seven straight nozzles and four inflow pressure conditions.

Temperature Separation Characteristics of a Vortex Tube Based on the Back Pressure of the Cold Air Exit (저온 출구의 배압조건에 따른 볼텍스 튜브의 온도분리 특성 연구)

  • Im, Seokyeon
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.166-171
    • /
    • 2016
  • Electric vehicle ownership is expanding for two reasons: its technology features have enhanced fuel economy, and the number of vehicle emissions regulations is increasing. Battery performance has a large influence on the capability of electric vehicles, and even though battery thermal management has been actively researched, specific technological improvements to battery performance are not being presented. For instance, many industrial applications utilize vortex tubes as components for refrigeration machines because of their numerous intrinsic benefits. If electric vehicles incorporate vortex tubes for battery cooling, performance and efficiency advancements are possible. This study uses a counter-flow vortex tube to investigate its temperature separation characteristics, based on the back pressure of the cold air exit and the difference between the inlet and back pressures. The experiment uses a vortex tube with the following parameters: six nozzle holes, a 20 mm inner vortex diameter (D), a 14D tube length, a 0.7D cold exit orifice diameter, and a nozzle area ratio of 0.142. The measurements prove that the temperature difference between the hot air and cold air decreased because of the flow resistance of the hot air and the backflow phenomenon at the cold air exit. The flow resistance causes the temperature difference to decrease, and the back pressure of the cold air exit influences the flow resistance. The results show that the back pressure significantly influences the efficiency of temperature separation.

Experimental Study to Nozzle of Vortex Tube (보텍스튜브의 노즐에 대한 실험적 연구)

  • Riu, K.J.;Bang, C.H.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.1-10
    • /
    • 1999
  • The phenomena of energy separation through the vortex tube was investigated experimentally, to see the effect of nozzle area ratio and partial admission rate on the energy separation and cooling capacity. The experiment was tarried out with various nozzle area ratios from 0.031 to 0.232 and partial admission rate from 0.176 to 0.956 by varying input pressure($0.2{\si\m}0.5$ MPa) and cold air mass fraction($y=0.1{\sim}1.0$). From the experimental result, we found the optimum nozzle area ratio and the effective partial admission rate for the available use and best cooling performance in given operation condition. While the maximum drop of cold air temperature was observed at around y=0.3 and $S_n=0.155$, the maximum cooling capacity was observed at around y=0.6 and $S_n=0.094$.

  • PDF

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube (대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구)

  • 황승식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.

Development of Environment Friendly Cold Air Grinding System (환경친화형 냉풍연삭시스템 개발)

  • Kim, J.D.;Noh, I.H.;Sung, S.H.;Kim, W.M.;Oh, S.C.;Lee, D.H.;Kwan, K.M.;Jeon, Y.H.;Kim, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.950-955
    • /
    • 2003
  • Recently, emerging as major tasks are grobal warming prevention, and earth environment conservation and preservation, and the resolution of environmental issues is crucial in the 21st century and needs to jointly be tackled by all nations in cooperation with each other. This research developed dry cold air grinding system, and this ensured cold effects of machine tools and dressing effects against loading phenomenon of grinding wheel, thus extending the tool life of grinding wheel.

  • PDF

Flow Dynamics of Gas Turbine Swirl Nozzle

  • Moriai, Hideki;Fujimoto, Yohei;Miyake, Yoshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.63-65
    • /
    • 2008
  • CFD cold-flow analysis results of the air-blast swirl nozzle for the small aircraft engine combustor are shown. Two major recirculation zones are observed near the nozzle. The centerline recirculation zone velocity profile of CFD is compared with the experimental results.

  • PDF

Flame characteristics of direct fired burner in fuel-air mixing conditions (열처리로 직화버너에서 연료-공기 혼합에 따른 화염 영향)

  • Lee, Cheolwoo;Kim, Youngho;Kim, Insu;Hong, Junggoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.285-288
    • /
    • 2014
  • Experiments have been performed for the burners used in the non-oxidizing direct fired furnaces for the cold rolled plate to investigate the effect of fuel/air mixing patterns of the burner nozzle on flame shape, temperature and combustion gas concentration. CFD simulation has also been performed to investigate the mixing state of air-fuel for a nozzle mixing burner and a partially pre-mixing burner. A partially pre-mixing burner showed that flame temperature increased up to $26^{\circ}C$ on average compared than that of the nozzle mixing. It also showed that the mixing distance is important at the partially pre-mixing burner. Test results for a partially pre-mixing burner showed that the residual oxygen concentration and the volume ratio of $CO/CO_2$ of the flame were applicable to be used in field furnaces.

  • PDF

Analysis of the Flow Characteristics of Plug Nozzle for Cold Air Test with Pintle Shape and Operating Pressure (공압시험용 플러그 노즐의 핀틀 형상 및 작동압력에 따른 유동 특성 분석)

  • Kim, Jeongjin;Oh, Seokjin;Heo, Junyoung;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.28-34
    • /
    • 2019
  • The thrust control calculation according to the operation of plug nozzle for cold air test and the analysis of the flow characteristics of the pintle shape and operation pressure are performed. The numerical computation was verified by comparing the flow structure and the coefficient of thrust with the experimental data. It was confirmed that the nozzle throat was formed at the design position on each pintle shape, and thrust control up to 1:8 was achieved only by the stroke change. Finally, although the aerospike nozzle is autonomous, it is unfavorable in the under_expansion condition, if it is designed for a very low nozzle pressure ratio.