• Title/Summary/Keyword: Cold Air Heat Transfer Rate

Search Result 33, Processing Time 0.018 seconds

Instability and Transition of Nonparallel Bouyancy-Induced Flows Adjacent to an Ice Surface Melting in Water (얼음 벽면의 융해율을 고려한 비평행 자연대류에서 유동의 불안정성과 천이에 관한 연구)

  • Hwang, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.437-450
    • /
    • 1996
  • A set of stability equations is formulated for natural convection flows adjacent to a vertical isothermal surface melting in cold pure water. It takes account of the nonparallelism of the base flows. The melting rate is regarded as a blowing velocity at the ice surface. The numerical solutions of the linear stability equations which constitute a two-point boundary value problem are accurately obtained for various values of the density extremum parameter $R=(T_m-T_{\infty})/(T_0-T_{\infty})$ in the range $0.3{\leq}R{\leq}0.6$, by using a computer code COLNEW. The blowing effects on the base flow becomes more significant as ambient temperature ($T_{\infty}$) increases to $T_{\infty}=10^{\circ}C$. The maximum decrease of heat transfer rate is about 6.4 percent. The stability results show that the melting at surface causes the critical Grashof number $G^*$ and the maximum frequency of disturbances to decrease. In comparision with the results for the conventional parallel flow model, the nonparallel flow model has a higher critical Grashof number but has lower amplification rates of disturbances than does the parallel flow model. The spatial amplification contours exhibit that the selective frequency $B_0$ of the nonparallel flow model is higher than that of the parallel flow model and that the effects of melting are rather small. The present study also indicates that the selective frequency $B_0$ can be easily predicted by the value of the frequency parameter $B^*$ at $G^*$, which comes from the neutral stability results of the nonparallel flow model.

  • PDF

Experimental Study on the Gasification Characteristics of Liquefied Gas Vaporizer with Various Shape (다양한 형상을 갖는 액화가스 기화기의 기화특성에 관한 실험적 연구)

  • Lee Yong-Hun;Lee Sang-Chul;Jeong Hyo-Min;Chung Han-Shik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper was studied for optimum design of the used vaporizer at a satellite station. Generally, the cold air is created by temperature drop on the vaporizer surface. In addition, the frost creates ice deposit layer, therefore, heat transfer on vaporizer decreases into the adiabatic condition. By this reason, recent vaporizer system is installed as parallel type, and it takes three times of vaporizer capacity. But this vaporizer system requires much installation costs and restricted by some space. It is very important to solve this problem. This study paper is regarding $LN_2$ vaporizer where the utilization increases recently. There are three variable conditions which are used in this study research. First, fin lengths of 4000mm, 6000mm, 8000mm and 0, 4, 8 fin types were applied rut each vaporizer. Second, we applied four season condition which consist of humidity, temperature and air velocity to the experimental environment. Finally, pressure was applied to get flow rate during experiment. This paper objective is to propose vaporizer type and length data for best performance of vaporizer through experiment.

  • PDF

Temporal and spatial distributions of heat fluxes in the East Sea(Sea of Japan) (東海熱收支 의 時.空間的인 分布)

  • 박원선;오임상
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.91-115
    • /
    • 1995
  • Air-sea heat fluxes in the East Sea were estimated from the various ship's data observed from 1961 to 1990 and the JMA buoy #6 data from 1976 to 1985. The oceanic heat transport in the sea was also determined from the fluxes above and the heat storage rate of the upper layer of 200m from the sea surface. In winter, The incoming solar radiation is almost balanced with the outgoing longwave radiation. but the sea loses her heat through the sea surface mainly due to the latent and sensible heat fluxes. The spatial variation of the net surface heat flux is about 100 Wm/SUP -2/, and the maximum loss of heat is occurred near the Tsugaru Strait. There are also lots of heat losses in the southern part of the East Sea, Korea Strait and Ulleung Basin. Particularly, the heat strong loss in the south-western part of the sea might be concerned with the formation of her Intermediate Homogeneous Water. In summer, the sea is heated up to about 120∼140 Wm/SUP -2/ sue to strong incoming solar radiation and weak turbulent heat fluxes and her spatial variation is only about 20 Wm/SUP -2/. The oceanic heat flux is positive in the southeasten part f the sea and the magnitude of the flux is larger than that of the net surface heat flux. This shows the importance of the area. In the southwestern part of the sea, however, the oceanic heat flux is negative. This fact implies cold water inflow, the North Korean Cold Water. The sigh of net surface heat flux is changed from negative to positive in March and from positive to negative in September. The heat content in the upper surface 200 m from the sea surface reaches its minimum in March and maximum in October. The annual variation of the net surface heat flux is 580 Wm/SUP -2/ in southwestern part of the sea. The annual mean values of net surface heat fluxes are negative, which mean the net heat transfer from the sea to the atmosphere. The magnitude of the flux is about 130 Wm/SUP -2/ near the Tsugaru Strait. The net surface fluxes in the Korea Strait and the Ulleung Basin are relatively larger than those of the rest areas. The spatial mean values of surface heat fluxes from 35$^{\circ}C$ to 39$^{\circ}$N are 129, -90, -58, and -32 Wm/SUP -2/ for the incoming solar radiation, latent hear flux, outgoing longwave radiation, and sensible heat flux, respectively.

  • PDF