• Title/Summary/Keyword: Colburn j계수

Search Result 22, Processing Time 0.026 seconds

A Numerical Study on the Effect of Fin Pitch and Fin Array on the Heat Transfer Performance of a Pre-heater (휜의 피치 및 배열 방식에 따른 프리히터의 전열 성능에 관한 연구)

  • Yoo, Ji Hoon;Kim, Kuisoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.40-47
    • /
    • 2013
  • In this paper, a numerical study was performed to investigate the performance characteristics of a pre-heater. The effects of fin pitch and fin array type(in-line, staggered, leaned array) were reported in terms of Colburn j-factor and Fanning friction factor f, as a function of Re. Three-dimensional numerical simulation has been performed by using flow analysis program, FLUENT 13.0. The results show that Colburn j-factor decreases with the decrease of fin pitch attached in the annular tube. But the fin pitch has little effect on f-factor. The staggered array and leaned array show improved heat transfer performance compared with in-line array, so that Colburn j-factor was increased. It also shows that the f-factor of leaned array is the highest in the studied range of Reynolds number.

Effect of Operating Conditions of a Fan-Coil Unit with an Oval Tube Type Heat Exchanger on Non-Dimensional Performance Coefficient (타원관 열교환기를 적용한 팬코일 유닛의 운전 조건이 무차원 성능계수에 미치는 영향)

  • Yoon, Jaedong;Lee, Younghoon;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effect of operating conditions of fan-coil unit with an oval tube type heat exchanger on its non-dimensional performance coefficient has been investigated. Pressure drops and heat transfer rates were measured under heating condition for various water flow rates, inlet temperatures and wind speeds. As a non-dimensional performance coefficient, Colburn j-factor was evaluated. The results show that the most sensitive parameter on heat flux is the inlet temperature, which affects the heat flux 4.7 and 7.2 times more than the wind speed and water flow rate, respectively. On the other hand, the Colburn j-factor as a non-dimensionalized index decreases with the wind speed, and has an maximum when the wind speed is about 1 m/s. the Colburn j-factor increases slowly with the water flow rate and inlet temperature but at a certain range of inlet temperature, the opposite phenomenon is found.

A Numerical Analysis of Flow and Heat Transfer in the Plate Heat Exchanger with Dimple (딤플형 판형 열교환기의 열유동 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.121-125
    • /
    • 2008
  • In this study, the characteristics of internal flow and the heat transfer performance of dimpled plate heat exchanger were numerically investigated. For the numerical analysis, conjugate heat transfer method between cold fluid - plate - hot fluid was studied with appropriate boundary conditions. Velocity magnitude, temperature and pressure distribution were obtained from the simulation. Correlations for fanning f-factor and Colburn j-factor were obtained from numerical results and compared to the experimented data.

  • PDF

Analysis for Air-Side Convective Heat Transfer Characteristics in Compact Heat Exchangers (밀집형 열교환기 내 공기 측 대류열전달특성)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1443-1448
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchangers with continuous plate fins. Simulation results such as air flow and temperature distributions are presented, and heat transfer characteristics are compared for various inlet conditions. Results from various turbulence models are also compared for applicability. There is large difference between the local heat transfer coefficient distributions along the cylinder wall for circular tubes. Colburn j factors from the calculated results of circular and flat tubes in the heat exchangers are compared for various Reynolds number. The predicted results in this study can be applied to the optimal design of air conditioning system. with compact heat exchanger.

  • PDF

A Numerical Simulation of Flow and Heat Transfer in a Dimple-type Plate Heat Exchanger (딤플형 판형 열교환기의 유동 및 전열특성에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Park, Hyoung-Joon;Ryu, Hea-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • In the present study, the characteristics on the internal flow and heat transfer of the dimple-type plate heat exchanger were numerically investigated. For the numerical analysis, the conjugate heat transfer analysis between hot fluid-separating plate-cold fluid was performed using the periodic boundary condition at the center area of the plate and appropriate inlet and outlet conditions for the two streams. The numerical results were validated by the comparison with the experimental data. From these results, the correlations of the Colburn j-factor for the heat transfer and the Fanning f-factor for the flow friction were obtained. The present results could be applicable for the optimal design of dimple-type plate heat exchanger.

Convective Heat Transfer Correlations for the Compact Heat Exchanger with Circular Tubes and Flat Tubes-Plate Fins (원형관 및 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 상관관계식)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.291-299
    • /
    • 2010
  • Aspect-ratio-based numerical analysis is carried out to investigate the air-side convective heat transfer characteristics in compact heat exchangers with circular tubes and flat tubes-plate fins. The RNG $k-{\varepsilon}$ model is adopted for turbulence analysis. The numerical analysis is carried out for aspect ratios ranging from 3.06 to 5.44 and for Reynolds numbers ranging from 1,000 to 10,000. The calculated results indicate a correlation between the friction factor and Colburn j factor in the compact heat exchanger system for the range of aspect ratios under consideration. The results obtained for circular tubes and flat tubes-plate fins in this study can be utilized to realize the optimal design of an air conditioning system.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Flat Tubes and Plate Fins According to the Aspect Ratio (종횡비에 따른 납작관-평판휜 형상의 밀집형 열교환기 내공기 측 대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.695-703
    • /
    • 2008
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with flat tubes and continuous plate fins according to the aspect ratio. RNG k-$\varepsilon$ model is applied for turbulence analysis. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous correlations for circular tubes. The numerical conditions are considered for the aspect ratios ranging from 3.06 to 5.44 and Reynolds number ranging from 1000 to 10,000. The results showed that heat transfer coefficients decreased with the increase of aspect ratio. From the calculated results a correlation of Colburn j factor for the considered aspect ratio in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Circular Tubes and Continuous Plate Fins (원형관-평판휜 형상의 밀집형 열교환기 내 공기 측대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.994-1001
    • /
    • 2007
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with circular tubes and continuous plate fins. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental correlations. Three models of standard and RNG $k-{\varepsilon}$, and Reynolds stress are applied for turbulence model applicability. Predicted heat transfer coefficient from the models of standard and RNG $k-{\varepsilon}$ are very close to those of the heat transfer correlations while there are relatively large difference, more than 17 percentage in the result from the Reynolds stress model. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested.

Analysis of Convective Heat Transfer Characteristics for the Compact Heat Exchanger with Flat Tubes and Plate Fins Having a Non-symmetric Staggered Arrangements (비대칭 엇갈림 배열로 구성된 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 특성 해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.318-325
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchanger with flat tubes and continuous plate fins having a symmetric and non-symm etric staggered arrangements. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental results. In order to investigate the flow and heat transfer features by periodic boundary conditions, the three blocks were used. Predicted heat transfer coefficients between the three blocks are similar while there are relatively differences, compared with the experimental data. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Performance Analysis of Fin-Tube Heat Exchangers with Various Fin Shapes for Waste Gas Heat Recovery (핀 형상에 따른 폐열회수용 핀-튜브 열교환기의 성능분석)

  • Maeng, Jae-Hun;Koo, Byeong-Soo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.627-632
    • /
    • 2011
  • As an innovative effort to secure economically viable heat recovery system, various fin shapes for industrial fin-tube heat exchangers have been studied for better performance. In this study, the waste gas heat recovery from four different fin shapes was experimentally performed for heat transfer rate and pressure drop. According to the tested results, the twist and wavy shape fins of rectangular type show the superior performance in terms of Goodness factor and jH/f factor ratio, whereas the circular spiral fin shows the inferior values. Experimental results shows good comparison with the numerical results with a slight discrepancy of 5%, which is quite resonable.