• Title/Summary/Keyword: Coincidence detection camera

Search Result 4, Processing Time 0.016 seconds

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

F-18-FDG Whole Body Scan using Gamma Camera equipped with Ultra High Energy Collimator in Cancer Patients: Comparison with FDG Coincidence PET (종양 환자에서 초고에너지(511 keV) 조준기를 이용한 전신 F-18-FDG 평면 영상: Coincidence 감마카메라 단층 촬영 영상과의 비교)

  • Pai, Moon-Sun;Park, Chan-H.;Joh, Chul-Woo;Yoon, Seok-Nam;Yang, Seung-Dae;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 1999
  • Purpose: The aim of this study is to demonstrate the feasibility of 2-[fluorine-18] fluoro-2-deoxy-D-glucose (F-18-FDG) whole body scan (FDG W/B Scan) using dual-head gamma camera equipped with ultra high energy collimator in patients with various cancers, and compare the results with those of coincidence imaging. Materials and Methods: Phantom studies of planar imaging with ultra high energy and coincidence tomography (FDG CoDe PET) were performed. Fourteen patients with known or suspected malignancy were examined. F-18-FDG whole body scan was performed using dual-head gamma camera with high energy (511 keV) collimators and regional FDG CoDe PET immediately followed it Radiological, clinical follow up and histologic results were correlated with F-18-FDG findings. Results: Planar phantom study showed 13.1 mm spatial resolution at 10 cm with a sensitivity of 2638 cpm/MBq/ml. In coincidence PET, spatial resolution was 7.49 mm and sensitivity was 5351 cpm/MBq/ml. Eight out of 14 patients showed hypermetabolic sites in primary or metastatic tumors in FDG CoDe PET. The lesions showing no hypermetabolic uptake of FDG in both methods were all less than 1 cm except one lesion of 2 cm sized metastatic lymph node. The metastatic lymph nodes of positive FDG uptake were more than 1.5 cm in size or conglomerated lesions of lymph nodes less than 1cm in size. FDG W/B scan showed similar results but had additional false positive and false negative cases. FDG W/B scan could not visualize liver metastasis in one case that showed multiple metastatic sites in FDG CoDe PET. Conclusion: FDG W/B scan with specially designed collimators depicted some cancers and their metastatic sites, although it had a limitation in image quality compared to that of FDG CoDe PET. This study suggests that F-18-FDG positron imaging using dual-head gamma camera is feasible in oncology and helpful if it should be more available by regional distribution of FDG.

  • PDF

Incidental detection of myocardial ischemia during F-18 FDG CoDe PET for the evaluation of a solitary pulmonary nodule

  • Park, Chan-H.;Park, Kwang-J.;Lee, Myoung-Hoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.6
    • /
    • pp.398-400
    • /
    • 2001
  • The authors report a case of unsuspected myocardial ischemia detected during CoDe FDG PET (coincidence detection fluorodeoxyglucose positron emission tomogram) which was performed for the evaluation of a solitary pulmonary nodule. Camera-based FDG PET without attenuation correction often reveals false defect in the inferior wall of the left ventricle in normals due to excessive attenuation. However, this asymptomatic patient had increased uptake in the inferior wall suggesting ischemic myocardium. The scan finding was confirmed by Tl-201 myocardial SPECT and coronary angiogram. The patient then underwent successful PTCA of mild RCA and right ventricular branch followed by right upper lobectomy for small cell lung cancer.

  • PDF

The Role of Camera-Based Coincidence Positron Emission Tomography in Nodal Staging of Non-Small Cell Lung Cancer (비소세포폐암의 림프절 병기 결정에서 Coincidence PET의 역할)

  • Lee, Sun-Min;Choi, Young-Hwa;Oh, Yoon-Jung;Cheong, Seong-Cheoll;Park, Kwang-Joo;Hwang, Sung-Chul;Lee, Yi-Hyeong;Park, Chan-H;Hahn, Myung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.5
    • /
    • pp.642-649
    • /
    • 1999
  • Background: It is very important to determine an accurate staging of the non-small cell lung cancer(NSCLC) for an assessment of operability and it's prognosis. However, it is difficult to evaluate tumor involvement of mediastinal lymph nodes accurately utilizing noninvasive imaging modalities. PET is one of the sensitive and specific imaging modality. Unfortunately PET is limited use because of prohibitive cost involved with it's operation. Recently hybrid SPECT/PET(single photon emission computed tomography/positron emission tomography) camera based PET imaging was introduced with relatively low cost. We evaluated the usefulness of coincidence detection(CoDe) PET in the detection of metastasis to the mediastinal lymph nodes in patients with NSCLC. Methods: Twenty one patients with NSCLC were evaluated by CT or MRI and they were considered operable. CoDe PET was performed in all 21 patients prior to surgery. Tomographic slices of axial, coronal and sagittal planes were visually analysed. At surgery, mediastinal lymph nodes were removed and histological diagnosis was performed. CoDe PET findings were correlated with histological findings. Results: Twenty of 21 primary tumor masses were detected by the CoDe PET. Thirteen of 21 patients was correctly diagnosed mediastinal lymph node metastasis by the CoDe PET. Pathological N0 was 14 cases and the specificity of N0 of CoDe PET was 64.3%. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of N1 node was 83.3%, 73.3%, 55.6%, 91.7%, and 76.2% respectively. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of N2 node was 60.0%, 87.5%, 60.0%,87.5%, and 90.0% respectively. There were 3 false negative cases but the size of the 3 nodes were less than 1cm. The size of true positive nodes were 1.1cm, 1.0cm, 0.5cm respectively. There were 1 false positive among the 12 lymph nodes which were larger than 1cm. False positive cases consisted of 1 tuberculosis case, 1 pneumoconiosis case and 1 anthracosis case. Conclusion: CoDe PET has relatively high negative predictive value in the enlarged lymph node in staging of mediastinal nodes in patients with NSCLC. Therefore CoDe PET is useful in ruling out metastasis of enlarged N3 nodes. However, further study is needed including more number of patients in the future.

  • PDF