• Title/Summary/Keyword: Coin battery

Search Result 63, Processing Time 0.02 seconds

Electrochemical Properties of Spinel LiMn2O4 Prepared Through Different Synthesis Routes (스피넬형 양극활물질 LiMn2O4의 합성방법에 따른 전기화학적 특성 비교)

  • Lee, Ki-Soo;Bang, Hyun-Joo;Sun, Yang-Kook
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.48-51
    • /
    • 2007
  • In order to investigate the effects of particle size and specific surface area(BET area) of spinel powder, $LiMn_2O_4$ were synthesized using metal oxide precursor by co-precipitation method(CoP) and solid state reaction (SSR) .X-ray diffraction(XRD) patterns revealed that the both prepared powder has a well developed spinel structure with Fd3m space group. The $LiMn_2O_4$ prepared by co-precipitation showed spherical morphology with narrow size distribution. However, the $LiMn_2O_4$ prepared by solid state reaction showed relatively smaller particles with irregular shape. The measured BET areas of the powers are $0.8m^2g^{-1}$ (CoP) and $3.6m^2g^{-1}$(SSR). The electrochemical performance of the Prepared $LiMn_2O_4$ powders was evaluated using coin type cells(CR2032) at elevated temperature ($55^{\circ}C$). The $LiMn_2O_4$ prepared by co-precipitation showed the better cycling performance(82.3%capacity retention at $50^{th}$ cycle) than that of the $LiMn_2O_4$(68.3%) prepared by solid state reaction at elevated temperature.

The Effect of Calcination Temperature on the Layered Li1.05Ni0.9Co0.05Ti0.05O2 for Lithium-ion Battery (리튬이온전지용 층상 Li1.05Ni0.9Co0.05Ti0.05O2에 대한 소성 온도의 영향)

  • Ko, Hyoung Shin;Park, Hyun Woo;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.718-724
    • /
    • 2018
  • In this study, the $Ni_{0.9}Co_{0.05}Ti_{0.05}(OH)_2$ precursor was prepared by the concentration gradient co-precipitation method. In order to overcome the structural change due to oxygen desorption in the cathode active material with high nickel content, the physical and electrochemical analysis of the cathode active material according to the calcination temperature were investigated. Physical properties of $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$ were analyzed by FE-SEM, XRD and TGA. The electrochemical performance of the coin cell using a cathode active material and $LiPF_6$(EC:EMC=1:2 vol%) electrolyte was evaluated by the initial charge/discharge efficiency, cycle retention, and rate capabilities. As a result, the initial capacity and initial efficiency of cathode materials were excellent with 244.5~247.9 mAh/g and 84.2~85.8% at the calcination temperature range of $750{\sim}760^{\circ}C$. Also, the capacity retention exhibited high stability of 97.8~99.1% after 50cycles.

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery (리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과)

  • Choi, Na Hyun;Kim, Eun Bi;Yeom, Tae Ho;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.327-333
    • /
    • 2022
  • In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.