• Title/Summary/Keyword: Coil Embolisation

Search Result 2, Processing Time 0.014 seconds

Changes of Blood Flow Characteristics for different Coil Locations after the Embolisation of Lateral Aneurysms (측방 동맥류 색전술 후 코일 위치에 따른 혈류 유동의 변화)

  • 이계한;송계웅;변홍식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.124-127
    • /
    • 2002
  • Ceil embolisation technique has been used to treat the intracranial aneurysms. Microcoils inserted into the aneurysm sac induce the blood flow stagnation inside the aneurysm sac, which causes the thrombus formation and embolisation of aneurysm. Since the intraaneurysmal flow patterns affect the embolisation process, we want to measure the flow field for different locations of coil inside the aneurysm sac . Lateral aneurysm models are manufactured using rapid prototyping, and the velocity fields are measured using particle image velocitimeter. Distally blocked models showed less flow into the aneurysm sac comparing to proximally blocked models. Also blocking the neck of aneurysm showed better inflow blocking comparing to blocking the dome of aneurysm. These results suggest that distal neck should be the preferred locations of coil for aneurysm embolisation.

  • PDF

The Change of Flow Characteristics in Lateral Aneurysm Models for Different Coil Locations (코일 위치에 따른 측방 동맥류 내부 혈류 유동의 변화)

  • 이계한;송계웅;변홍식
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.375-383
    • /
    • 2002
  • Aneurysm embolisation method using coils have been widely used. Micro coils are introduced via a small catheter, and are packed inside of aneurysm sac, which induces intraaneurysmal flow stagnation and thrombus formation. When partial blocking of an aneurysm is inevitable, the location of coils is important since it changes the flow patterns inside the aneurysm, which affect the embolisation process. We measured the flow field inside the partially blocked lateral aneurysm models in vitro, and tried to suggest the effective locations of coils for aneurysm embolisation. Velocity fields are measured using a particle image velocitimeter for different coil locations- proximal neck, distal neck, proximal dome and distal dome. Flow into the aneurysm sac was significantly reduced in the distally blocked models, and coils at distal neck blocked inflow more effectively comparing to those at distal dome. This study suggests that distal neck should be the most effective location for aneurysm embolisation.