• Title/Summary/Keyword: Cohort model based technique

Search Result 2, Processing Time 0.016 seconds

A Study on Adaptive Model Updating and a Priori Threshold Decision for Speaker Verification System (화자 확인 시스템을 위한 적응적 모델 갱신과 사전 문턱치 결정에 관한 연구)

  • 진세훈;이재희;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.20-26
    • /
    • 2000
  • In speaker verification system the HMM(hidden Markov model) parameter updating using small amount of data and the priori threshold decision are crucial factor for dealing with long-term variability in people voices. In the paper we present the speaker model updating technique which can be adaptable to the session-to-intra speaker variability and the priori threshold determining technique. The proposed technique decreases verification error rates which the session-to-session intra-speaker variability can bring by adapting new speech data to speaker model parameter through Baum Welch re-estimation. And in this study the proposed priori threshold determining technique is decided by a hybrid score measurement which combines the world model based technique and the cohen model based technique together. The results show that the proposed technique can lead a better performance and the difference of performance is small between the posteriori threshold decision based approach and the proposed priori threshold decision based approach.

  • PDF

Development and Validation of 18F-FDG PET/CT-Based Multivariable Clinical Prediction Models for the Identification of Malignancy-Associated Hemophagocytic Lymphohistiocytosis

  • Xu Yang;Xia Lu;Jun Liu;Ying Kan;Wei Wang;Shuxin Zhang;Lei Liu;Jixia Li;Jigang Yang
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.466-478
    • /
    • 2022
  • Objective: 18F-fluorodeoxyglucose (FDG) PET/CT is often used for detecting malignancy in patients with newly diagnosed hemophagocytic lymphohistiocytosis (HLH), with acceptable sensitivity but relatively low specificity. The aim of this study was to improve the diagnostic ability of 18F-FDG PET/CT in identifying malignancy in patients with HLH by combining 18F-FDG PET/CT and clinical parameters. Materials and Methods: Ninety-seven patients (age ≥ 14 years) with secondary HLH were retrospectively reviewed and divided into the derivation (n = 71) and validation (n = 26) cohorts according to admission time. In the derivation cohort, 22 patients had malignancy-associated HLH (M-HLH) and 49 patients had non-malignancy-associated HLH (NM-HLH). Data on pretreatment 18F-FDG PET/CT and laboratory results were collected. The variables were analyzed using the Mann-Whitney U test or Pearson's chi-square test, and a nomogram for predicting M-HLH was constructed using multivariable binary logistic regression. The predictors were also ranked using decision-tree analysis. The nomogram and decision tree were validated in the validation cohort (10 patients with M-HLH and 16 patients with NM-HLH). Results: The ratio of the maximal standardized uptake value (SUVmax) of the lymph nodes to that of the mediastinum, the ratio of the SUVmax of bone lesions or bone marrow to that of the mediastinum, and age were selected for constructing the model. The nomogram showed good performance in predicting M-HLH in the validation cohort, with an area under the receiver operating characteristic curve of 0.875 (95% confidence interval, 0.686-0.971). At an appropriate cutoff value, the sensitivity and specificity for identifying M-HLH were 90% (9/10) and 68.8% (11/16), respectively. The decision tree integrating the same variables showed 70% (7/10) sensitivity and 93.8% (15/16) specificity for identifying M-HLH. In comparison, visual analysis of 18F-FDG PET/CT images demonstrated 100% (10/10) sensitivity and 12.5% (2/16) specificity. Conclusion: 18F-FDG PET/CT may be a practical technique for identifying M-HLH. The model constructed using 18F-FDG PET/CT features and age was able to detect malignancy with better accuracy than visual analysis of 18F-FDG PET/CT images.