• Title/Summary/Keyword: Coherent Reflectivity

Search Result 7, Processing Time 0.022 seconds

Comparison of Moment Method/Monte-Carlo Simulation and PO for Bistatic Coherent Reflectivity of Sea Surfaces (바다 표면의 Bistatic Coherent Reflectivity 계산을 위한 Monte-Carlo/모멘트 법과 PO 모델 비교)

  • Kim Sang-Keun;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.1 s.104
    • /
    • pp.39-44
    • /
    • 2006
  • This paper proposes a method of moments(MoM)/Monte-Carlo simulation and Physical Optics(PO) model to determine Bistatic Coherent Reflectivity of sea surfaces at various wind speeds. For the MoM simulation, a Gaussian random rough sea surface was generated based on the data of Tae-An ocean at various wind speeds and sea surface heights. The numerical results of the MoM/Monte Carlo simulations were used to verify the validity region of the PO model. It was found that the numerical result for a flat surface agrees quite well with the Fresnel reflection coefficient. The validity of the PO model on the rough sea surface is shown by using ray tracing method.

Measurement of the group-delay dispersion of optical elements using white-light interferometry (백색광 간섭계를 이용한 광학소자의 군지연분산 측정)

  • Tayyab Imran;Hong, Kyung-Han;Yu, Tae-Jun;Nam, Chang-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.248-249
    • /
    • 2003
  • The characterization of laser mirrors is important for obtaining proper performance of femtosecond lasers. Characteristics of laser mirrors are usually described in terms of their reflectivity at a certain wavelength. In femtosecond laser applications, however, the dispersion property of the mirror should be considered because the temporal shape of a femtosecond light pulse changes during the reflection at the mirrors. (omitted)

  • PDF

Coherent x-ray scattering to study dynamics in thin films (결맞는 X-선 산란을 이용한 박막의 표면 거동 연구)

  • Kim, Hyun-Jung
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.143-146
    • /
    • 2005
  • A new method of x-ray photon correlation spectroscopy (XPCS) using coherent x-rays is developed recently for probing the dynamics of surface height fluctuations as a function of lateral length scale. This emerging technique applies the principles of dynamic light scattering in the x-ray regime. The short wavelength and slow time scales characteristic of XPCS extend the phase space accessible to scattering studies beyond some restrictions by light and neutron. In this paper, we demonstrate XPCS to study the dynamics of surface fluctuations in thin supported polymer films. We present experimental verification of the theoretical predictions for the wave vector and temperature dependence of the capillary wave relaxation times for the supported polymer films at melt for the film thicknesses thicker than 4 times of the radius of gyration of polymer. We observed a deviation from the conventional capillary wave predictions in thinner films. The analysis will be discussed in terms of surface tension, viscosity and effective interactions with the substrate.

Simulation of Rough Surface of CIGS (CuInGaSe) Solar Cell by RCWA (Rigorous Coupled Wave Analysis) Considering the Incoherency of Light

  • Kim, Sung Chul
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.180-183
    • /
    • 2014
  • The surface of semiconductor solar cells, such as a-Si or CIGS (CuInGaSe) solar cells is not flat but textured in the microscopic domain. With textured surfaces, the optical reflectivity of a solar cell is different from that of flat surfaces in the wavelength region. In this paper, the effects of a textured surface on a CIGS solar cell are presented by RCWA (Rigorous Coupled Wave Analysis) method. The effect of incoherent light is also considered by RCWA with a Fourier analysis while conventional optical simulation uses the input light on the solar cell as coherent light. Using experimental results, the author showed that the RCWA method with a Fourier analysis is a proper method to simulate the optical properties of CIGS solar cells.

A femtosecond Cr:LiSAF laser pumped by semiconductor lasers (반도체 레이저 여기 펨토초 Cr:LiSAF 레이저)

  • 박종대
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.360-364
    • /
    • 2000
  • We demonstrate self-starting passIve mode locking of a Cr:LiSAF laser, using a SCIDlconduclor Saturable Absorber Mirror (SESAM), Two high-power red semiconductor lasers (Coherent S-67-500C-100-H) of wavelength 667 nm and maximum power of 500 mW were used as pump lasers, The cavity has 10 cm radius-ai-curvature folding minors, two SF 10 prisms, a 99% reflectivity output coupler and a SESAM at dIe focus of a 10 cm radIus-at-curvature mirror. We used the laser crystal in BrewsterBrewster shape with 1 5% $Cr^{+3}$ ion concentration and the length of 6 mm, An X-shaped resonator was used to compensate the astigmatism induced by tile crystal. The structure of the SESAM cOllSists of 30 pmr of $AlAs/Al_{0.15}Ga_{0.85}As$ layer, wi1l1 a 10 nm GaAs quantum well situated in the topmost layer Output spectra were centeled at 833 nm, with 4 nm spectral bandwidth and pulse width was measured to be 220 fs, Output power of 3 mW is obtained at a pump power of 800 mW. 00 mW.

  • PDF

Simulation of Low-Grazing-Angle Coherent Sea Clutter (Low Grazing Angle에서의 코히어런트 해상 클러터 시뮬레이션)

  • Choi, Sang-Hyun;Song, Ji-Min;Jeon, Hyeon-Mu;Chung, Yong-Seek;Kim, Jong-Mann;Hong, Seong-Won;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.615-623
    • /
    • 2018
  • The probability density function(PDF) for the amplitude of the reflectivity of low-grazing-angle sea clutter has generally been modeled by a compound-Gaussian distribution, rather than by the Rayleigh distribution, owing to the intensity variation of each clutter patch over time. The texture component forming the reflectivity has been simulated by combining Gamma distribution and memory-less nonlinear transformation(MNLT). On the other hand, there is no typical method available that can be used to simulate the speckle component. We first review Watt's method, wherein the speckle is simulated starting from the Doppler spectrum of the received echoes that is modeled as having a Gaussian shape. Then, we introduce a newly proposed method. The proposed method simulates the speckle by manipulating a clutter covariance matrix through the Cholesky decomposition after minimizing the effect of adjacent clutter patches using an equalizer. The feasibility of the proposed method is validated through simulation, wherein the results from two methods are compared in terms of the Doppler spectrum and the correlation function.

Numerical Analysis on the Effect of Long-crested Wave to the RCS of Marine Target (장파봉파가 해상표적의 RCS에 미치는 영향에 대한 수치해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong;Lee, Jeong-Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.384-391
    • /
    • 2006
  • RCS effects of long-crested wave surfaces to marine targets are numerically analyzed using a 4-path model and a direct analysis method, developed based on physical optics and a combined method of physical optics/geometric optics, respectively. Reflectivity of long-crested wave surfaces is described with 'Fresnel reflection coefficients' The MPM(modified Pierson-Moskowitz) ocean spectrum is adopted to simulate long-crested waves in the direct analysis method. A numerical analysis of a benchmark model assures the validity of both methods. The direct analysis method is applied to the RCS calculation of electromagnetically large marine targets, which are vertically oriented or slanted to the long crested wave surfaces randomly generated with various significant wave heights. The long-crested wave surface much highly increases the RCS of the marine target, but those effects are decreased as the significant wave height grows up. At low elevation angle, the vertical model has entirely high RCS comparing slanted model, and the RCS of vertical flat plate is the highest on the calm sea surface, while those of slanted flat plates are the lowest on the calm sea surface. The RCS of marine targets on continuously-varying sea surface is more coherent at lower elevation angles, as well.