• Title/Summary/Keyword: Cognitive radios

Search Result 35, Processing Time 0.028 seconds

Throughput Analysis of CSMA/CA-based Cognitive Radio Networks in Idle Periods

  • Wang, Hanho;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Random access protocols feature inherent sensing functionality and distributed coordination, making them suitable for cognitive radio communication environments, where secondary users must detect the white space of the primary spectrum and utilize the idle primary spectrum efficiently without centralized control. These characteristics have led to the adoption of carrier-sensing-multiple-access/collision-avoidance (CSMA/CA) in cognitive radio. This paper proposes a new analytical framework for evaluating the performance of a CSMA/CA protocol that considers the characteristics of idle periods based on the primary traffic behavior in cognitive radio systems. In particular, the CSMA/CA-based secondary network was analyzed in the terms of idle period utilization, which is the average effective data transmission time portion in an idle period. The use of the idle period was maximized by taking its statistical features into consideration.

A Spectral Correlation Based Detection Method for Spectrum Sensing in Cognitive Radio

  • Han Ning;Song Jeong-Ig;Sohn Sung-Hwan;Kim Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.672-679
    • /
    • 2006
  • Cognitive radio, which is designed to dynamically adapt its transmission to the environments, is believed to be one of the fundamental techniques for future spectrum utilization. As the first step of cognitive radio, spectrum sensing is treated as the most important technique, through which cognition is well explained. In this paper, we propose a spectral correlation based detection method for spectrum sensing. An unlicensed secondary user system operating in TV broadcast bands is taken as an example. Based on the cyclostationarity of communication signals, spectral correlation function is used to minimize the effect of random noise and interference. Energy measurement and peak detection based criteria are proposed. Simulation results show that the proposed detection method outperforms the energy detection and is more suitable for spectrum sensing in cognitive radios.

Improving TCP Performance Over Cognitive Radio Networks (인지 무선 환경에서 TCP 성능 향상)

  • Byun, Sang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.353-360
    • /
    • 2014
  • In cognitive radio networks (CRNs), SU (secondary user)'s transmissions are frequently disrupted by PU (primary user)'s transmission. Therefore SU expereiences consecutive retransmission timeout and its exponential backoff, and subsequently, the TCP of SU does not proceed with the transmission even after the disruption is over or the SU succeeds to hold an idle channel. In order to solve this problem, we propose a cross-layer approach called TCP-Freeze-CR. Moreover we consider a practical scenario where either secondary transmitter (ST) or secondary receiver (SR) detects PU's transmission, which results in the need of spectrum synchronization mechanism. All of our proposals are implemented and verified with a real CRN testbed consisting of 6 software radios called USRP. The experimental results illustrate that standard TCP suffers from significant performance degradation and show that TCP-Freeze-CR greatly mitigates the degradation.

Advanced Sensing Techniques of Energy Detection in Cognitive Radios

  • Wang, Han-O;Noh, Go-San;Kim, Dong-Kyu;Kim, Sung-Tae;Hong, Dae-Sik
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.19-29
    • /
    • 2010
  • Recently, spectrum sensing has been intensively studied as a key technology in realizing the cognitive radio. There have been advances in the performance of spectrum sensing through both multi-antenna and cooperative sensing schemes. In this paper, the performances and complicated scenarios of the latest spectrum sensing schemes are analytically compared and arranged into a technical tree while considering practical concerns. This paper will give a macroscopic view of spectrum sensing and will also provide insight into future spectrum sensing works.

Spectrum Management Models for Cognitive Radios

  • Kaur, Prabhjot;Khosla, Arun;Uddin, Moin
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.222-227
    • /
    • 2013
  • This paper presents an analytical framework for dynamic spectrum allocation in cognitive radio networks. We propose a distributed queuing based Markovian model each for single channel and multiple channels access for a contending user. Knowledge about spectrum mobility is one of the most challenging problems in both these setups. To solve this, we consider probabilistic channel availability in case of licensed channel detection for single channel allocation, while variable data rates are considered using channel aggregation technique in the multiple channel access model. These models are designed for a centralized architecture to enable dynamic spectrum allocation and are compared on the basis of access latency and service duration.

Mitigation of Adverse Effects of Malicious Users on Cooperative Spectrum Sensing by Using Hausdorff Distance in Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.74-80
    • /
    • 2015
  • In cognitive radios, spectrum sensing plays an important role in accurately detecting the presence or absence of a licensed user. However, the intervention of malicious users (MUs) degrades the performance of spectrum sensing. Such users manipulate the local results and send falsified data to the data fusion center; this process is called spectrum sensing data falsification (SSDF). Thus, MUs degrade the spectrum sensing performance and increase uncertainty issues. In this paper, we propose a method based on the Hausdorff distance and a similarity measure matrix to measure the difference between the normal user evidence and the malicious user evidence. In addition, we use the Dempster-Shafer theory to combine the sets of evidence from each normal user evidence. We compare the proposed method with the k-means and Jaccard distance methods for malicious user detection. Simulation results show that the proposed method is effective against an SSDF attack.

A Cooperative Spectrum Sensing Scheme with an Adaptive Energy Threshold in Cognitive Radios

  • Van, Hiep-Vu;Koo, In-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.391-395
    • /
    • 2011
  • Cognitive radio (CR) technique is a useful tool for improving spectrum utilization by detecting and using the vacant frequency bands while avoiding interference to the primary user. The sensing performance in a CR network can be improved by allowing some CR users to perform cooperative spectrum sensing. In this paper, we propose a new sensing algorithm that utilizes an adaptive energy threshold for cooperative spectrum sensing in which a changeable energy threshold is adopted by the CR users for improving local sensing performance. Through the proposed scheme, the reliability of global decision can be enhanced mainly due to the improvement in local sensing performance.

Design and Analysis of Cognitive Radio Channel Allocation Model (인지 라디오의 채널할당 모델 설계 및 분석)

  • Lee, Kwang-Eui;Ro, Cheul-Woo;Kim, Kyung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.95-101
    • /
    • 2009
  • Cognitive Radios are encouraging solutions to improve the utilization of the radio spectrum In this paper, we propose channel allocation model for cognitive radio and analyse the performance of the model with Petri Nets. We design the model with an assumption that only partial information about current channel allocation information is known to CR users. The model is designed to communicate efficiently avoiding interference with primary and CR users and contains channel reobtaining process of CR users. The dropping rate and throughput of CR users under the various channel utilization of primary users are given as performance index.

Selection Based Cooperative Spectrum Sensing in Cognitive Radio (무선인지시스템을 위한 선택적 협력 스펙트럼 검출 기법)

  • Nhan, Nguyen Thanh;Kong, Hyung-Yun;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, we propose an effective method for cooperative spectrum sensing in cognitive radios where cognitive user(CR) with the highest reliability sensing data is only selected and allowed to report its local decision to FC as only decision making node. The proposed scheme enables CR users to implicitly compare their sensing data reliabilities based on their likelihood ratio, without any collaboration among cognitive radio users. Due to the mechanism, the proposed cooperative scheme can achieves a high spectrum sensing performance while only requiring extremely low cooperation resources such as signaling overhead and cooperative time in comparison with other existing methods such as maximum ratio combination (MRC) based, equal gain combination (EGC) based and conventional hard combination based cooperative sensing methods.

A Spectral Correlation Method for Cognitive Radio based Satellite system. (무선인지기반 위성시스템을 위한 주파수 검출방법)

  • Song, Jeong-Ik;Han, Jeo;Son, Seong-Hwan;Lee, Gyeong-Tak;Kim, Jae-Myeong
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • Cognitive radio, which is designed to dynamically adapt its transmission to its environments is believed to be one of the fundamental techniques for the future spectrum utilization. As the first step of cognitive radio, spectrum sensing is treated as the most important technique. In this paper, we propose a spectral correlation based detection method for spectrum sensing. Based on the cyclostationarity of communication signals, spectral correlation function is used to minimize the effect of random noise and interference. The ROC performance of conventional energy detection is shown. Simulation result show that the proposed detection method outperforms the energy detection and more suitable for spectrum sensing in cognitive radios.

  • PDF